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COMPLETELY COMPACT SPACES
By Norman Levine

By a completely compact space, we shall mean a space in which every subset.
is compact.

In this note, we will give a variety of characterizations of completely compact
spaces (when T is assumed) and give some properties of completely compact.
topologies.

We begin with

LEMMA 1. If (X,.9) is an infinite Hausdorff space, there exists an infinite
sequence of pairwise disjoint non-emp!y open subseis of X.

This is Theorem 5.2.3 in [2].

LEMMA 2. If (X,.9) has an infinite number of componenis, then there exists
an infinite sequence of pairwise disjoint non-empty open subsets of X.

See Theorem 1 in [1].

THEOREM 3. Let (X, 5 ) be a T-space. Then the following are equivalent:

(1) X is completely compact

(2) every open subset of X is compac!

(3) every subset of X is sequentially compact

(4) every subset of X is countadly compact

(5) every countable subset of X is compact

(6) every subset of X has a finite number of components

(7) ANA" is infinite for every infinite subset A of X, A’ denoling 'he derived’

set of A

(8) X con‘ains no infinite discrete sibet

(9) X contains no infinite Hausdorff subspace.

PROOF. (1) implies (2). This is clear.

(2) implies (3). Let A be a subset of X and suppose {g, :#>1) is a sequence
Sy in A. Assume no subsequence of S; converges to a point of 4. Then S does
not converge to @, and hence there exists an open set 0, and a subsequence S, of
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.Sy such that ¢;€0,and §; lies in €0;, € denoting the complement operator. Now
S, does not cuuverge to @, and hence there exists an open set 0, and a subse-
«quence S, of S, such that ¢,E0, and S, lics in €0,N€0,. By induction we have
a sequence of open sets O; and a sequence of sequences S; such that a,€0,,
S;.; is a subsequence of S;and S, lies in €0,N€0;_; N--NE0,. By (2), U0,
#>1} is compact and hence U {0, :>1}=0,U--UOy for some N. But S, is in
U {G; : i=1] and hence is in OlU--- U0, However Sy lies in E0yN- E0;=€
(0, U UON), a contradiction.

3) implies (4). Let A be a subset of X and suppose AS0,U0,U--. Suppose
that A is contained in O;U---U0,, for n> #. Take ¢,&0,, a,#0,U0,, -, a,20;U
--U0,, . Let B={eg,#>1}. It is clear that no subsequence of ([a,:#n>I}
converges to a point of B. Thus B is not sequentially comapct.

(4) implies (5). Let 4 be a countable subset of X. Then A isa Lindelof space
and by (4) countably compact. Thus 4 is compact.

(5) implies (6). Let A be a subset of X with an infinite number of compenents.
By Lemma 2, there exist an infinite sequence of non-empty pairwise disjoint sets
B, which are open in A. Let szBt- for cach 4. Then {b, :4=1] is a countable
subset of X which is not compact.

(6) implies (7). Let A be an infinite subset of X and suppose that ANA" is
finite. Then A—A" is infinite; take @, @+ an infinite sequence of distinct
points in A—A". For each ¢, there exists an open set O; such that ¢&0; and
ANO;—a;,=¢ or ANO,=la;}. Let B=lg;:i=1}. Then B is inflinite discrete and
hence has an infinite number of components.

(7) implies (8). Suppose ACX and 4 is infinite and discrete. Take a=A4;
there exists an open set O such that {g} =ANOC. Then ANO-a=¢ and «Fd’.
Thus ANA =¢.

(8) implies (9). Suppose ACX, A is infinite and A is a Hausdor{f subspace of
X. By Lemma 1, there exists a sequence of non-empty disjoint sets 4; which
are open in A. Let @ E4; for each ¢ and let B={g; 1¢=1}. Then B is infinite
and discrete.

(9) implies (1). (Here is where T, is used.) Suppose ASX and 4 is not
compact. Then there exists {0, : &4}, an open cover of 4 with no [finite
subcover. Take ;€4 ; then ¢,€0,, for some a;. Take @, in A such that e,&=0,, -

a,=0, for some a.. By induction there exists sequences {g; : i1} and e, : i1}



Completely Compact -Spaces 3

such that ¢, €0, and a,70, U--U0,  for i=2. Let B=lg;:4>1]. Then B is
infinite and Hausdor(f. Let @,#a, and assume that #<m. Then ¢,EBNO, and
a,EBN (0, - la},*,a,}) and BNOa, ani BN(O, - la),-,a,}) are disjoint anl
open in B.

LEMMA 4. Let .5 and 7% be topologies on X for which (X, 9 ) and (X, %)
are completely compact. Let %" =supl.5 ,#% ). Then (X,7") is completely compact.

PROOF. Let =9 UZ; then % isa subbase for #”. It suffices to show that
every subset 4 of X is & -compact. Let ACX and ACUJ{O,:aSLiUU w,:
yEr}t where 0,€5 for each aSf and U}Ei/ for each y&/'. Now (O, ! a€L}
is a 9 -open cover of {0, : «EA}and hence LU0, ! «€L) :Oa, - an, for some
ay, - a, in f. Likewise UU, 7€l =U,U--UU,_ for some 7,7, in /.
Thus A<0, U--U0, UU_U--UU_.

LEMMA 5. Let f:(X,7 )=(Y,%) be a surjection and let 9 be ihe weak
topology, that is, f={f_1[U] ve?). If (¥, %) is completely compact, then
souis (X7 ).

PROOF. Let ACX and suppose ASU(f (U] : €4}, Then fAISUIW,:
a&L] and f[A4] is compact. Thus flAICU, U--UU, for some ay, -, &, in L.
Then ACf 'V, ]U~Uf ' [U,].

LEMMA 6. Let f:(X,5 )—=(¥,%) be a continuous surjection and suppose that
(X,.7) is completely compact. Then (Y,%) is completely compact.

We omit the easy proof.

THEOREM 7. Let (Z,%") be the product space of (X,.7) and (¥,%). Then
(Z,%") is completely compact iff (X,.97) and (Y, %) are completely compact.

PROOF. If (Z,%") is completely compact, then (X,.97) and (¥, %) are com-
pletely compact. This follows from Lemma 6.

If (X,57)and (¥,#) are completely compact, then sois (Z, #"). This follows
ifrom Lemmas 4 and 5.

Theorem 7 cannot be extended to infinite product as is shown by

EXAMPLE 8. Let Y={e,b] and Z =19, {al, {8),Y}. Let (X, D)=,%) for
¢>1and let (X, 7)=T1{(X;, 5 :i=1). Then (X5 ) is completely compact
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for all 4, but (X,.97) is not. For if every subset of X were compact, then every
set would be closed (X is Hausdorff) and (X,.77) would be discrete.

THEOREM 9.  Zet (X,.57) beinfinite and completely compact. Then there exists
a topology # on X for which " C#, T ##% and (X, %) is complelely compact.

PROOF. F #Z(X) lest (X,.9) be discrete and not compact. Let AEF(X)
—F7. Let # ={¢, A, X}. Then " is a completely compact topology for X ;
let Z=supl.9”, #°]. Then (X, Z) is completely compact by Lemma 4.

THEOREM 10. Let (X, 97) be a space which is not completely compact. There

exists then a topology 7 for X such that Z T, ##5 and (X,%) is not
completely compact.

PROOF. Let ACX, A not compact. Let {0, :xEA] be an open cover of A4
with no finite subcover. There exists a sequence ¢; in A and a sequence «; in
4 such that ¢, €0, for all 4 and ¢;&aU--UQ, for i=2. Let Z={UI|U=¢ or
UES” and U20, U Oa,}' Clearly # is a topology for X, Oa‘ Z#% and A is
not #-compact.

The Ohio state university
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