The Relation between $H^0(X)$ and $Hom(H_0(X), Z)$

By Gyun-Sig Barg

§ 1. Introduction

In this paper we will investigate an algebraic structure of $H^o(x)$ and $H_0(X)$. Let $\pi_0(x)$ be the set of equivalent classes of points of X under the relation which there exits a path in X joining x to y for any two points x, $y \in X$, and let $F(\pi_0(x))$ be the free abelian group generated by $\pi_0(X)$, then we will prove that there exists an injective homomorphism between $H^o(X)$ and Hom $(H_0(X), Z)$.

§ 2. Definitions and Preliminaries

Definition 1. Let X be a topological space,

 $H^{\bullet}(X) = |f| f : X \rightarrow Z$ is continuous,

where Z is integers.

Lemma 1.

 $H^0(X)$ forms an abelian group.

Proof. It is obvious.

Definition 2.

Let X and Y be topological spaces and $f: X \rightarrow Y$ a cantinuous map. Define $f^*: H^0(Y) \rightarrow H^0(X)$ by $f^*(g) = g \cdot f$.

Lemma 2.

 f^* is a homomorphism. If 1 is the identity map of X, 1^* is the identity of H^0 (X).

If $f: X \rightarrow Y$ and $g: Y \rightarrow W$, then $(g \cdot f)^* = f^* \cdot g^*$.

Proof.

$$f^*(g_1 + g_2)(x) = (g_1 + g_2)(f(x)) = g_1(f(x)) + g_2(f(x))$$
$$= f^*g_1(x) + f^*g_2(x) = (f^*g_1 + f^*g_2)(x),$$

so we have a homomorphism.

The second statement is clear, so is the third on account of

$$(g \cdot f) * h = h \cdot (g \cdot f) = (h \cdot g)$$
 of $= f^* (h \cdot g) = (f^*, g^*) h$.

Lemma 3.

Suppose that $\pi_0(X)$ is the set of equivalent classes of points of X under the relation which there exists a path in X joining x to y for any two points in X and $f: X \rightarrow Y$ a continuous map, then f induces a map

$$f*: \pi_0(X) \rightarrow \pi_0(Y)$$
.

If f is the identity map of X, f* is the identity map of $\pi_0(X)$,

If
$$f: X \rightarrow Y$$
 and $g: Y \rightarrow W$ then $(g \circ f)_* = g_* f_*$.

Proof.

The way of proof of this is similar to (Lemma 2).

Proposition 1.

Let $f: X \rightarrow Z$ belong to $H^0(X)$. Then, if $x \sim x'$ as points of X,

f(x) = f(x'). Thus f factorizes as a function on the set of equivalence classes,

$$X \rightarrow \pi_0(X) \stackrel{c(J)}{\longrightarrow} Z.$$

Denote map $(\pi_0(X), Z)$ for the set of all integer—valued functions on the set $\pi_0(X)$.

Then pointwise addition of functions gives Map $(\pi_0(X), Z)$ the structure of an abelian group.

The map defined above.

$$C: H^0(X) \rightarrow \operatorname{Map}(\pi_0(X), \mathbb{Z})$$

is an injective Homomorphism of abelian groups.

Proof.

If $x \sim x'$, we can find a path $P : I \rightarrow X$ joining x to x'.

Then $f \cdot p : I \rightarrow Z$ is continuous.,

it is constant,

Thus f(P(0)) = f(P(1)), that is, f(x) = f(x'). Indeed, we can alternatively argue that the relation \sim is trivial on Z,

so that $\pi_0(Z) = Z$.

Then $c(f) = \pi_0(f)$.

It is clear that Map $(\pi_0(X), Z)$ is an abelian group.

Let β be the equivalence class of a general point $x \in X$.

That c is a homomorphism follows from the computation,

$$c(f_1+f_2)(\beta) = (f_1+f_2)(x) = f_1(x) + f_2(x)$$

= $c(f_1)(\beta) + c(f_2)(\beta) = (c(f_1) + c(f_2))(\beta)$,

implying $c(f_1 + f_2) = c(f_1) + c(f_2)$.

Finally, if $P: X \to \pi_0(X)$ denotes the projection, then by definition of c, $f = c(f) \cdot p$. Clearly, then, if c(f) = c(g),

We have $f = c(f) \cdot p = c(g) \cdot p = g$.

Proposition 2.

Let X be locally path-connected (l, p, c).

Then its path-components are open in X.

Proof.

Let β be a path-component, $x \in \beta$.

Since X is l, p, c, at x, x has a path-connected neighborhood U. All points of U are joinable to x, So $U \subset \beta$.

As β contain a neighborhood of each of its points, it is open

Proposition 3.

If X is l, p, c.

then

 $c: H^{0}(X) \rightarrow Map(\pi_{0}(X), \mathbb{Z})$ is an ismorphism.

Proof.

We already know that c is an injective homomorphism, it remains to show, then, that c is surjective.

Now c was characterized by $f = c(f) \cdot p$.

Thus a map $F: \pi_0(X) \to Z$ is in the image of c if and only if

 $f = F \circ p : X \rightarrow Z$ is continuous.

Now for each $M \in \mathbb{Z}$, $f^{-1} \mid n \mid$ is the union of the path-components, β such that $F(\beta) = n$. By (proposition 2),

Since X is l. p. c., these are open, hence so, is their union.

Thus f is continuous.

Definition 3.

 $H_0(X) = F(\pi_0(X))$, where $F(\pi_0(X))$ is the free abelian group over $\pi_0(X)$.

§ 3. Main theorem

Theorem

For any X, $(i^*)^{-1} \circ c = K : H^0(X) \longrightarrow \text{Hom}(H_0(X), \mathbb{Z})$ is an injective homomorphism of abelian groups.

If X is l. p. c., it is an isomorphism.

Proof.

The projection $P: X \to \pi_0(X)$ induces a group homomorphism

$$F(P): F(X) \longrightarrow F(\pi_0(X)) = H_0(X)$$

which is characterized by requiring the diagram

to commute.

From the universal mapping property of $F(\pi_0(X))$, we deduce that,

 i^* : Hom $(H_0(X), Z) \longrightarrow \text{Map}(\pi_0(X), Z)$ is an isomorphism.

If we combine this with (proposition 1) and (proposition 3), we get the main theorem.

REFERENCES '

- Andrew H. Wallace, An Introduction to Algebraic Topology, Pergamon Press, 1979.
- 4. Chan-bong Park, An Application of Properties of Universal Objects, Won-Kwang Univ theses Collection, 1976.
- 6. C. T. C. Wall, A Geometric Introduction to Topology, Addison-Wesley publishing Company. 1977.
- Jacob K. Goldhaber /Gertrube Ehrlich, Algebra, The Macmillan Company, 1970.
- 3. Mitchell. B, The Theory of Categories, Academic press, 1965.
- 2. Seymour Lipschutz, Theory and Problems of Genera Topology, Schaum publishing Company, 1976.

(Kwang-Ju Teacher's junior College)