Reactivities of Di-iso-butylnitrosoamine by Anodic Film Formed on Metals

산화피막전극을 이용한 디이소부틸니트로소아민의 전극반응

  • Hwang Kum-Sho (Department of Food Science and Technology, National Fisheries University of Busan)
  • 황금소 (부산수산대학 식품공학과)
  • Published : 1981.06.01

Abstract

To investigate the characteristics of anodic film formed on metals and the reactivities of organic inhibitor Di-iso-butylnitrosoamine (DBNA) in sea water. the cathodic reactions of anodic film formed on metals were carried out by using the potential drop method and galvanostatic method at $25^{\circ}C$. The investigated results are as follows: The anodic films formed on aluminum and zinc in 60mM $DBNA+9\%_{\circ}$ sea water did not show-changes of potential drop. However, those formed on lead and copper were reasonable electrodes. It was concluded that cathodic reactivities of proton through the anodic film in aqueous solution were constant without regard to the kinds of metals used with anodic film electrode at operated current density ranges, because the values of transition time obtained in 0.5M sodium chloride solution and $9\%_{\circ}$ sea water nearly coincided. The values of transition time of the first step by the galvanostatic method were obtained from 0.22 to 1.40 sec ranges far less than one minute. Therefore, it suggested that cathodic reactions of proton through the anodic film were mainly controlled by diffusion/adsorption process. The differences of between $\tau_{1}/4$ in $9\%_{\circ}$ sea water and $\tau_{1}/4$ in 60mM $DBNA+9\%_{\circ}$ sea water, and between $E_{1}/4$ in sea water and $E_{1}/4$ in 60mM $DBNA+9\%_{\circ}$ sea water at the constant current density with $1.9\times10^{-4}\sim5.0{\times}10^{-6}\;amp/cm^2$ were 0.06 sec and 0.53 v. respectively and cathodic reactions of DBNA on the anodic film electrodes were chiefly controlled by adsorption/diffusion process. The reason that adsorption quantities of proton on anodic film formed on aluminum and zinc in aqueous solutions were much more than those on lead and copper, seems to lie due mostly to the number of porosity produced on anodic film used.

해수에서 전기 전도성이 있는 산화 피막전극을 사용하여 금속 산화피막 전극들의 특성과 발암성 원인물질인 DBNA의 전극 반응성을 규명하는데 필요한 기초자료를 potential drop방법과 galvanostatic방법으로 얻어서 다음과 같은 결론을 내렸다. 1) $9\%_{\circ}$해수에 음극반응 억제제 DBNA를 첨가한 경우 알루미늄 산화피막 전극과 아연 산하피막 전극은potential drop현상을 나타내지 못 했으나 납 산화피막 전극과 구리 신화피막 전극은 피막전극으로서 적합한 기능을 가졌음을 알았다. 2) 제1단계 음극반응의 transition time이 $0.22\sim1.40sec$범위의 1분이내 값이므로 산화피막을 통과한 양성자는 확산$\rightarrow$흡착과정의 음극반응을 했다. 3) 0.5M NaCl수용액과 $9\%_{\circ}$해수에서 얻어진 transition time 값들이 대체로 일치한 것은 금속의 종류에 관계없이 산화피막을 통과한 양성자의 확산속도가 인정전류밀도 범위에서 인정하였기 때문이다. 4) $1.9\times10^{-4}\sim5.0\times10^{-6}\;amp/cm^2$의 전류밀도 범위에서 해수와 해수에 억제제 DBNA를 첨가했을때 얻어진 $\tau_{1}/4$값들의 $E_{1}/4$값들의 차가 각각 0.06sec와 0.53v있으므로, 억제 DBNA의 음극반응은 주로 흡착$\rightarrow$확산과정 이었다. 5) 알루미늄 산화피막과 아연 산화피막의 표면에 흡착된 전재질의 흡착량이 납 산화피막과 구리 산화피막보다 많은 것은 피막표면에 생성된 불규칙한 기공 생성 수가 증가하였기 때문이다.

Keywords