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ABSOLUTE VALUES OF QUASINILPOTENT OPERATORS

By SA-GE LEE

Let 12 be the Hilbert space of all absolutely square summable sequences
(g, 21, Z2, --+) Of complex numbers. The weighted shift operator S on 12 is
defined by

S(zq, 24, 23°+") = (0, Aoo, iz, +++),
where {1,:2=0,1,2--+} is a bounded sequence of complex numbers. It is
well known that S is quasinilpotent, if 24,—0 (p.101, [1]). The absolute
value |S| of S is the diagonal operator with diagonal entries |4, | 441,
[Z21, -+, relative to the standard basis. It follows that zero belongs to the
essential spectrum ¢, ({S|) of [S].

By borrowing an idea in (p.101,[1]), we want to prove the following
theorem which implies that quasinilpotent operators exist in abundance.

THEOREM. Let P be a positive (bounded linear) oferaior on a separable in-
finite dimensional Hilbert space H such that 0€06,(P). Then there is a quasi-
nilpotent operator S on H such that 0,(|S|)=0c,(F). Ccrverecly, if S is
a quasinilpotent operator on H, then 0€0o,(]S]).

Proof. We only prove the first part of the theorem, since the converse
part is easily checked. Let Q=o,(P). We first consider the case that 0 is
an accumulation point of ¢,(P). We can find a sequence {i,} Co.(P) of
strictly decreasing sequence of positive real numbers such that 1,—0. Let
E(-) denote the spectral measure of Pand E,=E((2,, 4,-1)), #=1,2,3, -,
Ey=E ([A o)), where L,=|[P|l. Thus

H =Zi}0®Hn, where H,=E,(H). We may assume that

dim (H,) =%, for all z=0,1,2, 3---.
Let Uy(H)=0. U;sr:Hp—H;,, i=0,1,2, ---be an isometric linear surjection,
which is possible because dim(H;+,)=dim(H;), i=0,1,2, -, and put

U=f_,; @® U, Also, let P,=P|H,; i=0,1,2, -, and write P=f} @ P,.
“ i=o

Then, for each
E= 2®{z,;n=0,1,2---}, where z,€H, and =2, 3---,
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we have
(PU) ¥ =PyU Py Uy Py 1 Upz @
P UPUs - PoUp+173+1D .
Put T=PU and ||&]]|=1. Then,
| T%]| < sup {{| Polll| Pyl | P4ll, NPl Poll--- 1| Pl -}
Ssup (| Boll +1) Ao~ Ap-1, Jodr=+ 2, ==} = (1Pl +1) Ap - A1
Thus

NTHFS (1Poll +1) 22 * NP FD Aot Ay

— 0 (as k— ),
since Az 1 — 0 (as 2 — o0).
It follows that T is quasinilpotent. We put S=T%*,so that ¢,(|S|)=0.(P),
while S is also a quasinilpotent operator.

Now we consider the case that 0 €¢,(P) and 0 is an isolated point of
o.(P). By the fact that an acumulation point of the spectrum ¢(P) lies on
.(P), we clearly see that (0 is an isolated point of ¢(P) as well. By a
result of Stampflif3], 0 is an eigenvalue of P having an infinite dimensional
eigenspace. It follows that P=0 @ ¢ with respect to a decomposition
H=H,®H,, where, H; (i=1,2) are infinite dimensional subspaces and @
is a positive operator on H;. We put

0| @
- SO
0 0

with respect to H=H,®H,. Then clearly T is a nilpotent operator with
0. (1T))=0.(P). Q.E.D.
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