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ABSOLUTE VALUES OF QUASINILPOTENT OPERATORS

By SA-GE LEE

Let [2 be the Hilbert space of all absolutely square summable sequences
(xo, XI> X2, ••• ) of complex n~mbers. The weighted shift operator S on [2 is
defined by

S(xo, Xl> X2"-) = (0, AoXo, AlXI> •••),

where {An:n=O, 1, 2"'} is a bounded sequence of complex numbers. It is
well known that S is quasinilpotent, if An-tO (p. 101, [lJ). The absolute
value IS I of S is the diagonal operator with diagonal entries IAo I, IA.ll,
IA2 /, "', relative to the standard basis. It follows that zero belongs to the
essential spectrum lle (IS l) of IS I.

By borrowing an idea in (p. 101, [lJ), we want to prove the following
theorem which implies that quasinilpotent operators exist in abundance.

THEOREM. Let P be a positive (bounded linear) operator on a separable in­
finite dimensional Hilbert space H such that OEl1e(P). Then there is a quasi­
nifpotentoperatorSonH such that lle(ISI)=lle(F). Ccr,cu-'c!J, if S is
a quasinilpot-ent operator on H, then 0Elle(I S I) .

Proof. We only prove the first part of the theorem, since the converse
part is easily checked. Let OElle(P). We first consider the case that 0 is
an accumulation point of lleCP). We can find a sequence {An} Clle(P) of
strictly decreasing sequence of positive real numbers such that An-tO. Let
E(-) denote the spectral measure of PandEn=E([il",An-l»' n=1,2,3,···,
Eo=E C[A.o, 00», where Ao~ IIPII. Thus

=
H=L:,reBH", where Hn=EnCH). We may assume that

n=O

dim (Hn) = ~o for all n=O, 1,2,3.. ·.
Let Uo(Ho) =0. Ui+l:Hj+l-7Hj, i=O, 1,2, ···be an isometric linear surjection,
which is possible because dim (Hi+l) =dim(Hj ), i=O, 1, 2, "', and put

=
U= L, reB Uj • Also,

i=O

00

let Pj=PI H j, i=O, 1, 2, "', and write P= L, (f) Pi'
;;;::0

Then, for each

~= L:,t-B {xn;n=O, 1, 2"'}' where xnERn and k=2,3"·'
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we have
(PU)k~=POUIPIU2···Pk-IUkXiJ)

PI U2P2U3···PkUk+IXk+I(J)···.
Put T=PU and 1I~1I~1. Then,

II Tk~ll ~sup {IlPollllPlll···l!Pkll, IIPII!P211···IIPk+IIl, ...}
~sup(IIPolI+1)Ao···Ak-1> AoAI···Ak, ...}~ (IIPoll+1)Ao···Ak-I­

Thus

II Tkll\-~ (1IPol! + 1) Ao···Ak-I) t ~ (11Poll +1) ~Ao+...+Ak-I

- 0 (as k- 00),
since Ak-I- 0 Cas k- 00).
It follows that Tis quasinilpotent. WeputS=T*,so that o"eCISI) =O'e(P) ,
while S is also a quasinilpotent operator.

Now we consider the case that 0 E O'e (p) and 0 is an isolated point of
O'e(P). By the fact that an acumulation point of the spectrum O'(P) lies on
O'e(P) , we clearly see that 0 is an isolated point of O'(p) as well. By a
result of Stampfli[3], 0 is an eigenvalue of P having an infinite dimensional
eigenspace. It follows that P=O E8 Q with respect to a decomposition
H=HI(J)H2, where, Hi (i=1,2) are infinite dimensional subspaces and Q
is a positive operator on H 2• We put

T+~~l
with respect to H=HI (£;H2• Then clearly T is a nilpotent operator with
O'eCITI)=O'e(P). Q.E.D.
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