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UNSOLVABILITY OF THE MIZOHATA OPERATOR

By Joncsik KiM, JUNG Soo Kiv, JooN-KOOK SHIN

§81. Introduction

Since 1957 when H. Lewy showed that the partial differential equation
uytin, +2Gz—y)u,=f (z, 3, ¢)
is not locally solvable for the generic C*-function f in R3, many other
simpler equations with C* coefficients without local solutions have been di-
scovered. One of the simplest forms of this kind is the partial differential
equation derived from the Mizohata operator; namely,

() Mu=-g%+it—g—: =f(z,t).

That this is not locally solvable in the space of distributions at any points
lying on the z-axis for the generic C*—function f can be shown easily fol-
lowing the general criteria, due to Nirenberg and Treves, for the local
solvability. (cf. [2], [3], [4D)

It seems, however, to us that it is not known yet the complete charact-
erization of those C™-functions f for which the equation (x) is not locally
solvable, for example at the origin.

Two known results in this line can be found in the short notes [4] by
Treves which deserve to be quoted here.

TaroreM A. Let f(z,t) €Cy" (R2) have the following properties:
(@) flz,t)=f(z, —t) for all{x,z) € RZ;
(b) supp f (i.e., the support of f) does not intersect the azis t=0;
© || f@oaz d+0
Then the equation (*) in R2
Mu=f
does not have any solution in D (R?).

THEOREM B. Let f(z, y) €Cy" R2) be such that
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K@= [T texp Gzt —EED £ O at

is an analytic function of z in BL

Then the equation (%) in R2 has a C'-solution in a neighborhood of any point
in R2.

In particular, if f(x,t) is odd with respect to t, the equation (%) is always
locally solvable at any point in R2.

The aim of this article is to generalize the Theorem A quoted above and
to get similar result without assuming the condition (b) that supp f does
not intersect the axis z=0.

2. Theorem

THEOREM. Let f(z,t) € Co” (R2) have the following properties:

Q) flz,t)=Ff(z, —¢t) for all (z,¢) ¢ R2;

{(2) there exists a sequence (K, (n=1,2,8--) of mutually disjoint compact
subset of R? such that

@) K, {(z,0) ltz=clzl} (n=1,2,3, ) for some fized constant ¢>>0,

(i) lim K,= {0} where O is the origin, and

(iii) supp £ © U (KUK, where Ky={(z, =) | (5, ) €K, 5

@ || ,f@naza=o.
Then the eguation in R2
ou , . Ou -
(*) Mu = 7 + Zta-' —f(x, t)
does not have any solution in D' (R2).

Proof. We shall prove that the equation (%) does not have any solution
u which is C!-function of ¢ valued in @,/, since all solutions of (%) have
necessarily this property. (¢f.[4])

By (i), setting s=%t2, we may write

flz, £)=F(z,s) (s=0).
We shall then define F(z,s)=0 for s<{0, Thus F(z,s) is a function defined
on RZ

Suppose now that there exists a solution # of (¥), C! with respect to ¢z
valued in @,’. Since # can be decomposed as a sum of even and odd terms
with respect to ¢-variable, we have

ulz, t) =v(z, s) +twlx, s) (s=0).
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Since f—zs—:t, we may set, for s>0,

dt
Muy= (—Q-—Ht—a-—) (v(z, s) +tw(z, 5))
ot ox ’ ’
=tv; +w-+2swtitv,+2isw,
=t (v,+ivg) + (w+2sw,+2isw,)
Therefore, for s>0,
t (v +ivg) + (w+2s w,+2isw,) =F(z,s)
or, equivalently, for s>0,
(4) 'i)s—}‘iUI:O,
(5) w+2sw,+2isw,=F{z, s)
which follows from the fact that F(z,s) =f(w,t) is even with respect to ¢.
Now the equation (5) can be written as

2—1—1/———5—w+ x/Tws+i\/Twz=25—s— (s>0)
or,
®) (V5w s+i( v 5w zzﬁ-s: (s>0).

We set here v5 w(z,s) =h(z) where z=s-+iz for s=0, z+0, and con-
sider the set @, the complement of supp F in the half space s>>0. The eg-
uation (6) shows that £(z) is holomorphic in @, since in Q

2 he) =%<—%4—2—%—> (V5 w) =0.

We recall that « is assumed to be C! function with respect to z-variable.
This implies that w(z,s) and hence h(z) =+ s w(z, s) is a continuous func-
tion on QU {z=s-+izx|s=0, z+#0}. Moreover, as + s w(x, s) vanishes
when s=0, k(z) takes the purely imaginary value (in fact, 0) on the im-
aginary axis s=0, with the origin excluded. Therefore, by the reflection
principle, A(z) can be extended as a holomorphic function, say k(z) again,
to V, the unbounded connected component of R2/{(supp/F) U (supp F)7}
where, as usual,

(supp F)~={(z, —1) | (z,2) € supp F}.
Since A=0 on the imaginary axis (with origin excluded), it follows that
h(z)=0 identically on V.
In particular,
Vs w(z, s)=0 identically on VN {(z,s) {s=0}.
We extend w(z,s) as a function on R? such that
w(z, s) =0 if s<0
(Then v sw(z,s) is a solution of the hypoelliptic partial differential equ-
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. ou 0 F .
ation s ——+i 6:: 5/ in R2/1{0}.)

Now we note that supp FC U G, where
a=1

o= {(3,9) s =52 (z,0) €K}

Since K,’s are also mutually disjoint, G,’s are also mutually disjoint.
Therefore we can find a large circle I” with center at the origin enclosing

all the G,’s (m=1,2,8, ) and a small contour I, enclosing all G;’s for
k=2 and such that I, N gl Gn,=¢. Let D, be the region surrounded by
I and [,

Now let us notice that F(z, s) =0 in a neighborhood of {(z, s) |s=0, z#0}.
Therefore, if we set

Vs
0 if s=90,
then, by the fact that f(z,t) =F(z,s) (s=0), s———%ﬁ and from the symm-

if s#0,
k(z,5) = 1

etry of f with respect to ¢, we have

1=” flz, )dz dt =1imf Fande &t =2lm|| k@ 9dz ds

N—soo RS
Smce v s w(z,s) is a solution of the hypoelliptic partial dlfferentlal equation
ou ou __ k(z,s)
s 75 Tt s 2
in R%/ {0} and k(z,s) is C~ in R*/ {0}, it follows that v s w(z,s) is C™—
function in R?/{0}. Therefore we have, by the Stoke’s theorem, that

I—4lim H ((V5w) i (V5w d o ds
-t (], 200 0 0], 26070 1

=4 1152 [—J x/swd.z—{—J iv swds-l-j Vs wdx—f i+ s wdz)
r r I'n I'n
But as v 5 w vanishes on I", and 4, we have
I =JJR2 f(z, t)dzdt=0, contrary to our hypothesis.

This completes our proof.

REMARK. We remark that, in general, supp f may intersect with z-axis
at the origin.
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