## UNSOLVABILITY OF THE MIZOHATA OPERATOR

By Jongsik Kim, Jung Soo Kim, Joon-Kook Shin

## § 1. Introduction

Since 1957 when H. Lewy showed that the partial differential equation  $u_x+iu_y+2(ix-y)u_t=f(x,y,t)$ 

is not locally solvable for the generic  $C^{\infty}$ -function f in  $\mathbb{R}^3$ , many other simpler equations with  $C^{\infty}$  coefficients without local solutions have been discovered. One of the simplest forms of this kind is the partial differential equation derived from the Mizohata operator; namely,

(\*) 
$$Mu = \frac{\partial u}{\partial t} + it \frac{\partial u}{\partial x} = f(x, t).$$

That this is not locally solvable in the space of distributions at any points lying on the x-axis for the generic  $C^{\infty}$ -function f can be shown easily following the general criteria, due to Nirenberg and Treves, for the local solvability. (cf. [2], [3], [4])

It seems, however, to us that it is not known yet the complete characterization of those  $C^{\infty}$ -functions f for which the equation (\*) is not locally solvable, for example at the origin.

Two known results in this line can be found in the short notes [4] by Treves which deserve to be quoted here.

THEOREM A. Let  $f(x,t) \in C_0^{\infty}(\mathbb{R}^2)$  have the following properties:

- (a) f(x,t) = f(x,-t) for  $all(x,t) \in \mathbb{R}^2$ ;
- (b) supp f (i. e., the support of f) does not intersect the axis t=0;

(c) 
$$\iint_{\mathbb{R}^2} f(x,t) dx \ dt \neq 0$$

Then the equation (\*) in R<sup>2</sup>

$$Mu = f$$

does not have any solution in  $\mathcal{D}'(\mathbb{R}^2)$ .

THEOREM B. Let  $f(x, y) \in C_0^{\infty}(\mathbb{R}^2)$  be such that

$$Kf(x) = \frac{1}{2\pi} \int_{t=-\infty}^{+\infty} \int_{\xi=0}^{+\infty} \{ \exp(ix\xi - \frac{t^2|\xi|}{2}) \} f(x,\xi) dt d\xi$$

is an analytic function of x in  $\mathbb{R}^1$ .

Then the equation (\*) in  $\mathbb{R}^2$  has a  $\mathbb{C}^{1}$ -solution in a neighborhood of any point in  $\mathbb{R}^2$ .

In particular, if f(x,t) is odd with respect to t, the equation (\*) is always locally solvable at any point in  $\mathbb{R}^2$ .

The aim of this article is to generalize the Theorem A quoted above and to get similar result without assuming the condition (b) that  $supp\ f$  does not intersect the axis t=0.

## 2. Theorem

THEOREM. Let  $f(x,t) \in C_0^{\infty}(\mathbb{R}^2)$  have the following properties:

- (1) f(x,t) = f(x,-t) for all  $(x,t) \in \mathbb{R}^2$ ;
- (2) there exists a sequence  $\{K_n\}$   $(n=1,2,3\cdots)$  of mutually disjoint compact subset of  $\mathbb{R}^2$  such that
  - (i)  $K_n \subset \{(x,t) | t \ge c|x| \}$   $(n=1,2,3,\cdots)$  for some fixed constant c > 0,
  - (ii)  $\lim K_n = \{0\}$  where 0 is the origin, and
  - (iii) supp  $f \subset \bigcup_{n=1}^{\infty} (K_n \cup K_n^-)$ , where  $K_n^- = \{(x, -t) \mid (x, t) \in K_n\}$ ;

(3) 
$$\iint_{\mathbb{R}^2} f(x,t) dx dt \neq 0.$$

Then the equation in R<sup>2</sup>

(\*) 
$$Mu = \frac{\partial u}{\partial t} + it \frac{\partial u}{\partial x} = f(x, t)$$

does not have any solution in  $\mathfrak{D}'(\mathbb{R}^2)$ .

*Proof.* We shall prove that the equation (\*) does not have any solution u which is  $C^1$ -function of t valued in  $\mathcal{D}_x'$ , since all solutions of (\*) have necessarily this property. (cf. [4])

By (i), setting 
$$s = \frac{1}{2}t^2$$
, we may write

$$f(x,t) = F(x,s) \qquad (s \ge 0).$$

We shall then define F(x, s) = 0 for s < 0, Thus F(x, s) is a function defined on  $R^2$ .

Suppose now that there exists a solution u of (\*),  $C^1$  with respect to t valued in  $\mathcal{D}_x$ . Since u can be decomposed as a sum of even and odd terms with respect to t-variable, we have

$$u(x,t) = v(x,s) + tw(x,s)$$
  $(s \ge 0).$ 

Since  $\frac{ds}{dt} = t$ , we may set, for s > 0,

$$Mu = \left(\frac{\partial}{\partial t} + it\frac{\partial}{\partial x}\right) (v(x, s) + tw(x, s))$$

$$= tv_s + w + 2sw_s + itv_x + 2isw_x$$

$$= t(v_s + iv_s) + (w + 2sw_s + 2isw_s)$$

Therefore, for s>0,

$$t(v_s+iv_x)+(w+2s \ w_s+2isw_x)=F(x,s)$$

or, equivalently, for s>0,

$$(4) v_s + iv_x = 0,$$

$$(5) w + 2sw_s + 2isw_x = F(x, s)$$

which follows from the fact that F(x,s)=f(w,t) is even with respect to t.

$$\frac{1}{2\sqrt{s}}w + \sqrt{s}w_s + i\sqrt{s}w_x = \frac{F}{2\sqrt{s}}$$
 (s>0)

or,

(6) 
$$(\sqrt{s}w)_s + i(\sqrt{s}w)_x = \frac{F}{2\sqrt{s}}$$
 (s>0).

We set here  $\sqrt{s} w(x, s) = h(z)$  where z = s + ix for  $s \ge 0$ ,  $x \ne 0$ , and consider the set Q, the complement of supp F in the half space s > 0. The equation (6) shows that h(z) is holomorphic in Q, since in Q

$$\frac{\partial}{-\partial \bar{z}}h(z) = \frac{1}{2}\left(\frac{\partial}{\partial s} + i\frac{\partial}{\partial x}\right) (\sqrt{s}w) = 0.$$

We recall that u is assumed to be  $C^1$  function with respect to t-variable. This implies that w(x,s) and hence  $h(z) = \sqrt{s} w(x,s)$  is a continuous function on  $Q \cup \{z = s + ix \mid s = 0, x \neq 0\}$ . Moreover, as  $\sqrt{s} w(x,s)$  vanishes when s = 0, h(z) takes the purely imaginary value (in fact, 0) on the imaginary axis s = 0, with the origin excluded. Therefore, by the reflection principle, h(z) can be extended as a holomorphic function, say h(z) again, to V, the unbounded connected component of  $\mathbb{R}^2/\{(supp/F) \cup (suppF)^-\}$  where, as usual,

$$(supp F)^- = \{(x, -t) \mid (x, t) \in supp F\}.$$

Since  $h\equiv 0$  on the imaginary axis (with origin excluded), it follows that  $h(z)\equiv 0$  identically on V.

In particular,

$$\sqrt{s} w(x, s) \equiv 0$$
 identically on  $V \cap \{(x, s) \mid s \geq 0\}$ .

We extend w(x, s) as a function on  $\mathbb{R}^2$  such that

$$w(x, s) = 0 \text{ if } s < 0$$

(Then  $\sqrt{s} w(x, s)$  is a solution of the hypoelliptic partial differential equ-

ation 
$$\frac{\partial u}{\partial s} + i \frac{\partial u}{\partial x} = \frac{F}{2\sqrt{s}}$$
 in  $\mathbb{R}^2/\{0\}$ .)

Now we note that supp  $F \subset \bigcup_{n=1}^{\infty} G_n$  where

$$G_n = \{(x, s) \mid s = \frac{1}{2}t^2, (x, t) \in K_n\}.$$

Since  $K_n$ 's are also mutually disjoint,  $G_n$ 's are also mutually disjoint.

Therefore we can find a large circle  $\Gamma$  with center at the origin enclosing all the  $G_m$ 's  $(m=1, 2, 3, \cdots)$  and a small contour  $\Gamma_n$  enclosing all  $G_k$ 's for  $k \ge n$  and such that  $\Gamma_n \cap \bigcup_{m=1}^{\infty} G_m = \phi$ . Let  $D_n$  be the region surrounded by  $\Gamma$  and  $\Gamma_n$ .

Now let us notice that F(x, s) = 0 in a neighborhood of  $\{(x, s) | s = 0, x \neq 0\}$ . Therefore, if we set

$$k(x,s) = \begin{cases} \frac{F(x,s)}{\sqrt{s}} & \text{if } s \neq 0, \\ 0 & \text{if } s = 0, \end{cases}$$

then, by the fact that f(x,t) = F(x,s)  $(s \ge 0)$ ,  $s = \frac{1}{2}t^2$  and from the symmetry of f with respect to t, we have

$$I = \iint_{\mathbb{R}^2} f(x,t) dx dt = \lim_{n \to \infty} \iint_{D_n} f(x,t) dx dt = 2 \lim_{n \to \infty} \iint_{D_n} k(x,s) dx ds.$$

Since  $\sqrt{s} w(x, s)$  is a solution of the hypoelliptic partial differential equation

$$\frac{\partial u}{\partial s} + i \frac{\partial u}{\partial s} = \frac{k(x, s)}{2}$$

in  $\mathbb{R}^2/\{0\}$  and k(x, s) is  $C^{\infty}$  in  $\mathbb{R}^n/\{0\}$ , it follows that  $\sqrt{s}$  w(x, s) is  $C^{\infty}$ -function in  $\mathbb{R}^n/\{0\}$ . Therefore we have, by the Stoke's theorem, that

$$I = 4 \lim_{n \to \infty} \iint_{D_n} \{ (\sqrt{s} w)_s + i (\sqrt{s} w)_x \} dx ds$$

$$= 4 \lim_{n \to \infty} \left[ -\iint_{D_n} \frac{\partial (\sqrt{s} w)}{\partial s} ds dx + \iint_{D_n} \frac{\partial (i \sqrt{s} w)}{\partial x} dx ds \right]$$

$$= 4 \lim_{n \to \infty} \left[ -\int_{\Gamma} \sqrt{s} w dx + \int_{\Gamma} i \sqrt{s} w ds + \int_{\Gamma_n} \sqrt{s} w dx - \int_{\Gamma_n} i \sqrt{s} w dx \right]$$

But as  $\sqrt{s}$  w vanishes on  $\Gamma_n$  and  $\Delta$ , we have

 $I = \iint_{\mathbb{R}^2} f(x, t) dx dt = 0$ , contrary to our hypothesis.

This completes our proof.

REMARK. We remark that, in general, supp f may intersect with x-axis at the origin.

## References

- 1. L. Hörmander, Differential equations without solutions, Math. Ann. 140 (1960), 169-173.
- 2. L. Nirenberg and F. Treves, On local solvability of linear partial differential equations, part I: Necessary conditions Comm. Pure Appl. Math. 23 (1970), 1-38.
- 3. Treves, On the existence and regularity of solutions of linear partial differential equations, Proc. Symposia Pure Math. Vol. 23, A.M.S. (1973), 33-60.
- 4. \_\_\_\_\_, Lectures on linear partial differential equations, Korea-U.S. Math. Workshop, 79 (1979), 247-316.

Seoul National University