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SEMI-WEAKLY DECOMPOSABLE
AND SEMI-ANALYTICALLY DECOMPOSABLE OPERATORS

By JAE CyuL RHO

1. Introduction

Throughout this note, 7T is a bounded linear operator on a complex Ban-
ach space X. An invariant subspace Y of T is called a spectral maximal
subspace if Y contains all invariant subspace M for which o (T M) <o (T1Y).
The operator T is called decomposable if for every finite open cover {G,
Gs, -G, of ¢(T) there are invariant subspaces Y3, Ya, Y, such that

(1) Y; is a spectral maximal subspace for each 7,
(2) O(Tl Y'z) CGi (zzl’ 2,0, n),
B) X=Y,+Yo++7,
The operator T is weakly decomposable if we replace the condition

3" X:_\j/1 Y;(closed linear span of Y, Y5, --+Y,) instead of (3).

An invariant subspace Y of T is said to be analytically invariant if for
each X-valued analytic function f defined on V; in C such that

A—T)fD) €Y for A& Vy, then f(A) €V, for 2€ Vy.

A bounded linear operator T is said to be analytically decomposable if for
any finite open cover {Gy, G, -+, G,} of ¢(T), there are invariant subspaces
Y;(i=1,2, ---,n) such that

(i) Y; is analytically invariant (ii) ¢(T|Y;) ©G; for each i

(iif) X=\/1 Y.

2. Sf;ectrum of a weakly decomposable operator

It is known that an operator T is decomposable=>Weakly decomposable =
analytically decomposable; the first implication is obvious, the second is
true since every spectral maximal subspace of T is analytically invariant but
not the converse in general (see[3]).

- An open question is that whether or not the second implication is rever-
sible, we will give a partial answer of this question in proposition 2.3
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below. A complete answer will be given for the semi-analytically decom-
posable operator and the semi-weakly decomposable operator. {see Theorem
3.3

By definitions, each weakly decomposable operator is analytically decompo-
sable. So we have the following facts:

(a) A weakly decomposable operator has the single valued extension
property,

(b) If T is weakly decomposable, then ¢(T)=0,,(T), where 0,,(T)
is the approximate point spectrum of 7.

Proofs for the analytically decomposable operator are given in 3.

If Y is an ultra-invariant subspace of 7T, then it is known that ¢(T)=
o(T|Y) Uo(TY), where TY€B(X/Y) is the quotient operator induced by T
(see[1], Lemma 3.1, p.1487). Since every spectral maximal subspace of T
is ultra—invariant, the above equality holds for any spectral maximal sub-
space of T.

It is true that ¢,,(T1Y)C0,,(T), but in general there is no inclusion
relation ¢,, (TY) and 0,,(T) in spite of ¢(TY) C¢(T). Furthermore, if T
is weakly decomposable, we do not know whether or not T|Y, TY are we-
akly decomposable even if Yis a spectral maximal subspace of T. Therefore,
we are unable to say the equality ¢,,(TY)=0(TY) or 6,(T|Y)=0(T|Y)
hold. We may prove, however, the following proposition:

2.1. PROPOSITION Let T be weakly decomposable and Y a spectral mazimal
subspace of T, then
Uap(T) =o(TIY)U O'ap(TY)-

Proof. It is known that ¢(T|Y)<e(T) holds for any spectral maximal
subspace of 7. For any A€o (T)\o(T/Y), since 0(T)=0,,(T), there ex-
ists a sequence {z,} such that ||z,/|=1 for each » and (AI—T)z,—0 (n—
o)., We claim z,¢ Y for infinitely many but finite number of #; if z,€Y
for infinitely many n. then (AI—T|Y)z,=(AI—T)y,—0 as n—oc, whence
2€0,,(T|Y)<o(T|Y), a contradiction.

Furthermore, if there is a subsequence {z,,} of {r,} such that l‘litm Zp=

zo exists in Y, then libm(}{I— T)zy=M—T|Y)zy=0. (2¢#0). Thus 2 is

an eigenvalue of T|Y, therefore A€o (T|Y), a contradiction. Thus with-
out loss of generality we may assume that z,&Y for every n, and there
is no subsequence of {zr,} such that the limit exist in Y. It follows that
lz,/ll= inf {||z,+yll:y€Y} #0 {for any z, and {z,/} does not converges to
0'=Y, where 2’=z+Y.

Hence 0<||z,/l|<llz,ll=1 for each =, z,/ does not converge to (.
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Now we put
2, =z, [llz,’|| for each =,
then 2, €X/Y, llz./ll=1 for each x. _
Since (AI—TY)z,, = @I—T)z,/llz/l|+Y—>0'=Y, we have 1€0,,(T¥).
It follows that
o (T)\o (T1Y) C0,4(TY), 0 (T) o (T|Y) Uy (TY) o (T),
ie, 0,5(T)=0(T|Y) Uo,(TY).

2.2. LEMMA Let Y be an invariant subspace of T, then ¢(TY) No(T|Y)
=¢. if and only if o (2’ TY)Co(x, T)\o(T|Y) for eack zEX, where z’'=
z+Y.

Proof. Suppose 6(TY)No(T|Y)=¢. Since IUeX,Y o2, TY)=0¢(TY) we
have o (2/, TY) No(T|Y)=¢ for each z'.

It is easily be shown that ¢ (2’, TY) Co(z, T); for, each i€p(z, T),
there exists an analytic X-valued function f such that

A—T)f(A) ==z,
whence (A—T)Y[f(D) ) =2, where [ f(-)]:(z’, TY)—>X/Y is an analytic
function. Hence p(z, T) Cp(2’, TY). Therefore, we have ¢ (z’, TY) Co(z, T)
\a(T|Y).

Conversely, if o(z, TY) Co(x, T)\o(T|Y) for each z€X, then o¢(TY)
co(T)\o(T|Y), thus a(TY) Na(T]|Y)=4¢.

2.3. PROPOSITION Let T be analytically decomposable. If o(T) is the dis-
joint union of o(T\Y) and o(TY) for any analytically invariant subspaces Y
of T, then T is weakly decomposable.

Proof. It is known that if Y is an analytically invariant subspace, then
o(T)=0c(T|Y) Uc(TY). It is enough to show the assumption implies that
Y is a spectral maximal subspace of 7. Suppose Z is invariant under T
such that ¢ (TZ) co(T|Y). If z€Z, then

oz, T)<a(T|Z)Uo(T|Y).
Thus, by Lemma 2.2, we have

o, TY) Co(z, T)\o(T|Y) =0,
therefore

z'=z+Y=Y or z€Y, whence ZCY.

3. Semi-analytically and semi-weakly decomposable operators

3.1. DEFINITION An operator T is said to be semi-analytically decomposable
if any finite open covering {Gj}:%; of ¢(T) there are corresponding a sys-
tem of analytically invariant subspaces {Y;}%: of T such that

(i) U(T/ Y1) CG1(1=1’ 2, "‘ﬂ),
(ii) there exists at least one Y,(1<%k<=n) such that X= Yk+¥= Y;
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3.2. DErFINITION An operator T is called semi-weakly decomposable if we
replace spectral maximal subspaces instead of analytically invariant subspaces

in Definition 3.1.

By definition, a semi-weakly decomposable operator is two-decomposable
thus it is decomposable (see[4]). Thus the notion of semi-weakly decom-
posable operator is same as the decomposable operator. Also we can say
that a semi-weakly decomposable operator is semi-analytically decomposable
since every spectral maximal subspace is analytically invariant. Now, we
shall show the converse is valid:

3.3. THEOREM T is semi-analytically decomposable if and only if T is se-

miweakly decomposable.
For the proof of theorem 3.3, we begin with the following

3.4. LEMMA Let T be a semi~analytically decomposable operator. For every -
closed set F in C (or 6(T)), X¢e(F)={z<€X:0(z, T) CF} is closed in X.
Thus X¢(F)is a spectral mazimal subspace of T.

Proof. Since T is semi-analytically decomposable, 7 is analytically decom-
posable. Therefore T has the single valued extension property, so X (F)
is defined. For any open covering {G;, Go} of o(T), there exist analytically
invariant subspaces Yj, Y, such that »

o (T Y) CG; (1=1,2) with ¥V;+Y,=X.

Therefore by the same calculation as in the proof of ([2], Theorem 1. 5,

p-31), Xrp(F) is closed in X. )

Proof of Theorem 3.3. Let {Gj}i-, be any finite open covering of o (7).
We have to seek a system of spectral maximal subspaces {Z}%, such that
o(T\Z;) =G; for each ¢ and Zk+\/1,Zi=X'

i*

We consider another open covering {H} %, of ¢(T) such that H,CG; for
each i. By definition, there. are corresponding analytically invariant subs-
paces {Y;} 7. such that

(1) U(Tl Yi)CH,' for 63;(;11 Z, Yk‘“!—\/Y,'—:X.
Since o(y, T) Co(T|Y;) ©H; for each y€Y,, yeX,(H).
Thus Y;=Xr(H;) for each i.
And XT(ITIi) =XT(Hiﬂ0'(T)) =Xr(Fp), where Fizf’_fiﬂo'(T),
is closed for each i by Lemma 3.4. Therefore we have a system of spectral
maximal subspaces {Xr(F)}Z, of T such that
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Yk+‘\$4 Y;CXT (Fk) +¥;XT (Fz) .
Hence we have X=X, (Fp) +\/kXT (F).
i*

Furthermore, since ¢ (T'| X (F,)) CF;cH,=G; for each i, if we put Xp
(F;))=1Z; for each i, we have the required spectral maximal subspaces of T.

The following corollary is immediate consequence of the Theorem 3.3:

3.5. COROLLARY If T is semi-analytically decomposable, then T is weakly
decomposable.

3.6. COROLLARY T is semi—analytically decomposable if and only if T is
decomposable. '

For, T is semi-analytically decomposable if and only if 7 is semi-weakly
decomposable if and only if T is decomposable.

3.7. COROLLARY If T is semi—analytically decomposable and if f is any
non—constant scalar valued analytic function on some neighborhood of o(T),
then f(T) is weakly decomposable.

For, if T is semi-analytically decomposable then T is decomposable by
corollary 3.6. And f(T) is weakly decomposable.

It is also obvious that if T is semi-weakly decomposable then f(T) is
weakly decomposable.
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