Bull. Korean Math. Soc. Vol. 18, No. 1, 1981

ON THE ASYMPTOTIC BEHAVIOR OF NONEXPANSIVE MAPS IN BANACH SPACES

By Sehie Park

Let *E* be a Banach space, *C* a closed convex subset of *E*, $T:C \rightarrow C$ a nonexpansive map, and F(T) the set of fixed points of *T*. If *E* is uniformly convex, $F(T) \neq \phi$ and *T* is asymptotically regular at $x \in C$ (that is, $\lim_n ||T^n x - T^{n+1} x|| = 0$), it remains an open question whether $\{T^n x\}$ converges weakly to a fixed point of *T*. Partial answers in the affirmative were given by Opial [3] for those *E* that have a weakly sequentially continuous duality map, and by Baillon, Bruck, and Reich [1] for odd *T* and C = -C. In this paper, we improve the result in [1] by removing the condition C = -C and the convexity and by assuming that *T* is continuous and satisfies

$$||Tx+Ty|| \le ||x+y|| \tag{(*)}$$

for all x, y in C. Note that if C = -C, then T is odd and nonexpansive if and only if (*) holds.

THEOREM. Let E be a uniformly convex Banach space, C a closed subset of E, and T continuous selfmap of C satisfying (*). If T is asymptotically regular at $x \in C$, then $\{T^n x\}$ converges strongly to a fixed point of T.

Proof. Since T satisfies (*), $\lim_{n} ||T^{n}x|| = d$ exists and $\{||T^{n+i}x+T^{n}x||\}$ is nonincreasing for each *i*. Since $2d \leq 2||T^{n}x|| \leq ||T^{n+i}x+T^{n}x||+||T^{n}x-T^{n+i}x||$ and $\lim_{n} ||T^{n}x-T^{n+i}x||=0$ by the asymptotic regularity, we have $2d \leq ||T^{n+i}x+T^{n}x|| = 1$ for all *n* and *i*. Now we have $\lim_{n} ||T^{n}x||=d$ and $\lim_{m,n} ||T^{n}x+T^{m}x||=2d$. By uniform convexity, $\lim_{m,n} ||T^{n}x-T^{m}x||=0$, whence $\{T^{n}x\}$ converges strongly to some $q \in C$. Since T is continuous, we have q = Tq.

Our theorem improves Theorem 1.1 of [1]. Simple examples showing that our improvement is proper are easily constructed. Note that in Theorem 1.1 of [1] the convexity of C can be replaced by the weaker condition $O \in C$. Therefore, if $O \in F(T)$ and $C \neq -C$, then by defining T(-x) = -Tx for $x \in C$, T can be extended to a selfmap of $C \cup -C$, and our theorem

Sehie Park

rem may follow from Theorem 1.1 of [1].

Corollaries 2.1, 2.4, Theorems 3.1, 4.1, and Corollary 4.1 of [1] can be also improved in the similar way. Note that Corollary 1.2 in [2] also follows from our theorem.

References

2. R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459-470.

3. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591-597.

University of California, Berkeley Seoul National University

2

^{1.} J. B. Baillon, R. E. Bruck, and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.