LIE-ADMISSIBLE MUTATION ALGEBRAS

By Young So Ko

1. Introduction

For a nonassociative algebra B, denote by B^{-}the algebra with multiplication $[x, y]=x y-y x$ defined on the vector space B. Then B is said to be Lie-admissible if B^{-}is a Lie algebra; that is, B^{-}satisfies the Jacobi identity

$$
[[x, y], z]+[[y, z], x]+[[z, x], y]=0 .
$$

The associative algebras and Lie algebras are clearly Lie-admissible. Various types of nonassociative Lie-admissible algebras, which arise in both algebraic and physical contexts, are discussed in Myung [3] and Santilli [5].

An element x in an algebra B over a field F is said to be flexible if $x(y x)=(x y) x$, for all y in B, and B is said to be flexible if every element in B is flexible [1]. An element x in B is called power-associative if the subalgebra $F[x]$, consisting of all polynomials in x with coefficient in F, is associative and B is said to be power-associative if every element in B is power-associative [1].

In this paper we discuss the flexibility, power-associativity and some elementary properties of the mutation algebras which are derived from associative algebras.

2. Mutation of associative algebras

Let A be an associative algebra over a field F. We assume throughout the paper that the underlying base field F of A has characteristic 0 and A has an identity element 1 . Let p, q be two fixed elements in A. We define the algebra $A(p, q)$, called the $(p, q)-$ mutation of A, to be the algebra with new multiplication

$$
x * y=x p y-y q x
$$

but with the same vector space as A. Denote the associator, Lie product and Jordan product in $A(p, q)$ by $(x, y, z)^{*}=(x * y) * z-x *(y * z)$, $[x, y]^{*}=x * y-y * x, \quad\{x, y\}=\frac{1}{2}(x * y+y * x)$.
Then it is easily seen that

$$
\begin{align*}
& {[x, y]^{*}=x(p+q) y-y(p+q) x,} \\
& \{x, y]^{*}=\frac{1}{2}[x(p-q) y+y(p-q) x] \\
& (x, y, x)^{*}=x(p x q-q x p) y+y(p x q-q x p) x, \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
(x, x, x)^{*}=2 x(p x q-q x p) x . \tag{3}
\end{equation*}
$$

For a fixed element $r \in A$, define $A^{(r)}$ to be the algebra with multiplication

$$
x^{\circ}{ }_{r} y=x r y, x, y \in A,
$$

but with the same vector space as A. The algebra $A^{(r)}$ is called the r-homotope of A and it is easily checked that $A^{(r)}$ is also associative. Thus the Lie and Jordan products in $A(p, q)$ coincide with the Lie and Jordan producte respectively in the $(p+q)$-homotope $A^{(p ; q)}$ and ($\left.p-q\right)$-homotope $A^{(p-q)}$. Since associative algebras are Lie-admissible and Jordan-admissible, we have that $A(p, q)$ is Lie-admissible and Jordan-admissible. However, in general, $A(p, q)$ is far from being flexible, power-associative or even third power-associative, that is $(x, x, x)^{*}=0$ [2].

In [2] it is shown that $A(p, \lambda p), \lambda \in F$ and $A(p, q)$ where p, q are in the center of A, are flexible and power associative.

In $A(p, 1)$, an element x in A is flexible if the associator

$$
(x, y, x)^{*}=x p x y-x^{2} p y+y p x^{2}-y x p x
$$

is zero for any $y \in A$. Thus $(x, y, x)^{*}=0$ if and only if $x^{2} p=p x^{2}$ and $x p x$ $-x^{2} p$ is in the center of A.

If $A(p, 1)$ is flexible then for any $x \in A, x^{2} p=p x^{2}$. Thus $(1+x)^{2} p=p(1$ $+x)^{2}$ and hence $x p=p x$. By (2) we can easily check that x is flexible in both $A(p, q)$ and $A(p, r)$ then x is flexible in $A(p, q+r)$.
We summerize these results in
Theorem 1. Let A be an associative algebra over F with an identity element 1. We have
i) For $p, q, r \in A$, assume $A(p, q)$ be flexible then $A(p, r)$ is flexible if and only if $A(p, q+r)$ is flexible,
ii) For $\lambda \in F, p \in A, x \in A$ is flexible in $A(p, 1+\lambda p)$ if and only if $x^{2} p=p x^{2}$ and $x p x-x^{2} p$ is in the center of A,
iii) For $\lambda \in F, p \in A, A(p, 1+\lambda p)$ is flexible if and only if p is in the center of A.

It is known that power-associative mutation algebra $A(p, q)$ need not be flexible [4], and in general flexible Lie-admissible algebra need not be power -associative. However in $A(p, q)$ we have

Theorem 2. Let A be an associative algebra over F with an identity element 1. If an element x in A is third power-associative in $A(p, q)$, that is $(x, x, x)^{*}=0$, then x is power-associative in $A(p, q)$. In particular if $A(p, q)$ is flexible, then $A(p, q)$ is power-associative.

Proof. By (3), $(x, x, x)^{*}=0$ means

$$
\begin{equation*}
x p x q x=x q x p x . \tag{4}
\end{equation*}
$$

Hence it is easy to check that for any natural number n,

$$
\begin{align*}
& {[x(p-q)]^{n} x p x=x p[x(p-q)]^{n} x,} \\
& {[x(p-q)]^{n} x q x=x q[x(p-q)]^{n} x .} \tag{5}
\end{align*}
$$

Let $x^{*_{n}}=x^{* n^{-1}} * x, n>1$, and denote $x^{1}=x$ and $x^{0}=1$ in A. It is sufficient to prove that for any $n \geq 2$, and natural numbers i, j, with $i+j=n$,

$$
\begin{equation*}
x^{* i} * x^{* j}=[x(p-q)]^{n-1} x . \tag{6}
\end{equation*}
$$

For $n=2$, it is obvious and for $n=3$, from hypothesis $x^{* 2} * x=x * x^{* 2}$, and by (5)

$$
\begin{aligned}
x^{* 2} * x & =[x(p-q)] x p x-x q[x(p-q)] x \\
& =[x(p-q)] x p x-[x(p-q)] x q x=[x(p-q)]^{2} x .
\end{aligned}
$$

Assume (6) for $i+j<n$, then for $i+j=n$,

$$
\begin{aligned}
& x^{* i_{i}} * x^{* j} \\
&=[x(p-q)]^{i-1} x p[x(p-q)]^{j-1} x-[x(p-q)]^{j-1} x q[x(p-q)]^{i-1} x \\
&=[x(p-q)]^{n-2} x p x-[x(p-q)]^{n-2} x q x=[x(p-q)]^{n-1} x,
\end{aligned}
$$

and completes the proof.
It can be shown that $A(p, 1)$ is power-associative if and only if p is in the center of A, hence we have

Corollary. Let A be an associative algebra over F, and $\lambda \in F$, then $A(p, 1+\lambda p)$ is power-associative if and only if p is in the center of A.

In [4] Oehmke discussed the flexibility and powerassociativity in $A(p, 1-p)$.

3. Ideals

For a nonassociative algebra B, I is an ideal of B if I is a subspace of B and for every $x \in I, y \in B, x y$ and $y x$ are in I. Denote A^{*} the algebra with multiplication $\{x, y\}=\frac{1}{2}(x y+y x)$ defined on the vector space B.

Let A be an associative algebra over F, and I be an ideal of $A(p, q)$. Assume $p q=q p$. Then for any $x \in A$ and $y \in I, \quad x * y=x p y-y q x \in I$ and
$y * x=y p x-x q y \in I$. Hence

$$
\begin{align*}
& x(p-q) y+y(p-q) x \in I, \\
& x(p+q) y-y(p+q) x \in I . \tag{7}
\end{align*}
$$

Thus I is an ideal of $\left(A^{(p+q)}\right)^{-}$and an ideal of $\left(A^{(p-q)}\right)^{+}$. Setting $x=p+q$, $x=p-q$ respectively in (7), we have

$$
\begin{gather*}
(p-q)(p+q) y \in I, \\
y(p+q)(p-q) \in I . \tag{8}
\end{gather*}
$$

for any $y \in I$. Denote the multiplication of the associative algebra $A^{(p+q)}$ by \circ, that is, $x \circ y=x(p+q) y$. We assume also $x \circ(p-q) \circ y+y \circ(p-q) \circ x \in I$ for any $x \in A, y \in I$. Then by (7) and (8), the elements

$$
\begin{aligned}
& x \circ(p-q) \circ y-y \circ x \circ(p-q), \\
& y \circ x \circ(p-q)-x \circ y \circ(p-q), \\
& x \circ y \circ(p-q)-y \circ(p-q) \circ x, \text { and } \\
& y^{\circ}(p-q) \circ x+x \circ(p-q) \circ y
\end{aligned}
$$

are in I. Adding these elements, we have

$$
\begin{equation*}
x \circ(p-q) \circ y \in I \text { and } y \circ(p-q) \circ x \in I \tag{9}
\end{equation*}
$$

Theorem 3. Let A be the algebra of all $n \times n$ matrices over a field F with characteristic 0. If $p+q$ is a invertible element of A and $p \neq \pm q$, then $A(p, q)$ is simple.

Proof. It can be checked that the map $x \rightarrow x(p+q)^{-1}$ is an isomorphism of $A(p, q)$ onto $A\left((p+q)^{-1} p,(p+q)^{-1} q\right)$. Since $(p+q)^{-1} p$ commutes with $(p+q)^{-1} q$, we may assume $p+q=1$ and $p q=q p$. Let I be a proper ideal of $A(p, q)$. Since $A^{(p+q)}=A$, from (7), (8), (9) we have I is an ideal of A^{-} and the elements $(p-q) y, y(p-q), x(p-q) y$ and $y(p-q) x$ are in I for any $x \in A, y \in I$. Since the Lie algebra $s l(n, F)$ is simple for $n \geq 2, I$ must be the set of trace 0 matrices S or the center Z of A.

If $I=S$, then $(p-q)$ is a scalar matrix because $(p-q) y \in S$ and $y(p-q) \in S$ for any $y \in S$. Let x be an element of A. Since $(p-q) \neq 0$,

$$
\left[x(p-q)^{-1}\right](p-q) y=x y \in I
$$

and

$$
y(p-q)\left[(p-q)^{-1} x\right]=y x \in I
$$

Hence I is an ideal of A which is impossible.
If $I=Z$ then $(p-q) \in Z$ because Z is the set of all scalar-matrices. Thus for $x \in A, l \in Z, x(p-q) l=\lambda x \in Z$ for some $\lambda \in F$, and contradiction.

If $n=1$, then A is isomorphic to F and hence $(p-q)$ is invertible. Thus we can easily show that $A(p, q)$ is a simple algebra.

References

1. A. A. Albert, Power-associative rings. Amer. Math. Soc. 64 (1948), 552-597.
2. H.C. Myung and R.M. Santilli, Further studies on the recently proposed experimental test of Pauli's exclusion principle for the strong inter actions, Hadronic J. 3 (1979), 196-255.
3. H.C. Myung, Current development of Lie-admissible algebras, Bull. Korean Math. Soc. 16 (1980), 85-97.
4. R.H. Oenmke, Some elementary structure theorms for a class of Lie-admissible algebras, Hadronic J. 3 (1979), 293-319.
5. R. M. Satilli, Lie-admissible approach to the hadronic structure, Volume I. Hadronic Press, Nonantum, Ma. (1978).

Seoul National University

