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LIE-ADMISSIBLE MUTATION ALGEBRAS

By Youxc So Ko

1. Introduction

For a nonassociative algebra B, denote by B~ the algebra with multipli-
cation [z, y]=zy—yz defined on the vector space B. Then B is said to be
Lie-admissible if B~ is a Lie algebra; that is, B~ satisfies the Jacobi identity

]:[l‘, y:L z]_l—u:y, z], .’E]"{"[EZ, 1'], y:l=0.

The associative algebras and Lie algebras are clearly Lie-admissible. Various
types of nonassociative Lie-admissible algebras, which arise in both alge-
braic and physical contexts, are discussed in Myung [3] and Santilli [5].

An element z in an algebra B over a field F is said to be Aexible if
z(yz) = (zy)z, for all y in B, and B is said to be flexible if every element
in B is flexible [1]. An element z in B is called power—associative if the
subalgebra F[z], consisting of all polynomials in z with coefficient in F, is
associative and B is said to be power-associative if every element in B is
power-associative [ 1.

In this paper we discuss the flexibility, power—associativity and some elem-
entary properties of the mutation algebras which are derived from associa-
tive algebras.

2. Mutation of associative algebras

Let A be an associative algebra over a field F. We assume throughout
the paper that the underlying base field F of A has characteristic 0 and A
has an identity element 1. Let p,g be two fixed elements in A. We define
the algebra A(p,q), called the (p, q)-mutation of A, to be the algebra with
new multiplication

T * y=xPpy— YT .
but with the same vector space as A. Denote the associator, Lie product
and Jordan product in A(p,q) by (z,y,2)*=(a*xy)sz—ax(y*=),

[z, 9] =axy—yrz, {m, 5} =5 (ry-+ysa).

Then it is easily seen that
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[z, yI*=z(p+ D) y—y(p-+a)z,

{z, 5} *==—12—|:x(15—¢1)y+y(1>—q)x], .

(z, 9, ©) *=z(pzg—qzp) y+y(pzg—qzp) z, 2
and

(z, z, ) *=2z(pzqg—qzp) . (3
For a fizxed element r& A, define A to be the algebra with multiplication
zoy=zry, T,y<EA4,

but with the same vector space as A. The algebra A™ is called the
r—homotope of A and it is easily checked that A‘” is also associative. Thus
the Lie and Jordan products in A(p,q) coincide with the Lie and Jordan
producte respectively in the (p-+g)-homotope A»*? and (p—g)-homotope
A9, Since associative algebras are Lie-admissible and Jordan—admissible,
we have that A(p,¢) is Lie-admissible and Jordan-admissible. However, in
general, A(p,q) is far from being flexible, power-associative or even third
power—associative, that is (z, z, z) *=0 [2].

In [2] it is shown that A(p, 2p), AEF and A(p, q) where p,q are in the
center of A, are flexible and power associative.

In A(p,1), an element z in A is flexible if the associator

(z, 3, x) *=zxpxy—2?py+ypa®—yzpz
is zero for any y= A. Thus (z,y,z)*=0 if and only if 2%p=pa? and zpz
—x2p is in the center of A.
If A(p,1) is flexible then for any z€ A, 22p=pz% Thus (1+2)2p=p(1
+1z)2? and hence zp=pz. By (2) we can easily check that x is flexible in

both A(p,q) and A(p,r) then z is flexible in A(p,g+r).
We summerize these results in

THEOREM 1. Let A be an associative algebra over F with an identity elem-
ent 1. We have

i) For p,q,rEA, assume A(p,q) be flexible then A(p,r) is flexible
‘ if and only if A(p,q+7) is flexible, :
ii) For AEF, pc A, zEA is flexible in A(p,1+2p) if and only if
22p=px® and zpx—z’p is in the center of A,
iii) For A€F, p€A, A(p, 1+ 2p) is flexible if and only if p is in the
" center of A.

It is known that power-associative mutation algebra A(p,q) need not be
flexible [4], and in general flexible Lie-admissible algebra need not be power
-associative. However in A(p,q) we have ‘
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THEOREM 2. Let A be an associative algebra over F with an identity ele-
ment 1. If an element x in A is third power—associative in A(p,q), that is
(z, x, £) *=0, then z is power-associative in A(p,q). In particular i f Ap,q)
is flexible, then A(p,q) is power—associative.

Proof. By (3), (z,z,z)*=0 means
xrprer=129TPI. “@
Hence it is easy to check that for any natural number 7,
Lz(p—@) Jzpz=zp[z(p—9) Iz,
[z(p—q) J*zqz=zq[ z (p—q) I*x. (5)
Let z**=z*""1xz, n>>1, and denote z!=z and z=1 in A. It is sufficient
to prove that for any »>2, and natural numbers 7,j, with i+j=2,
z¥sr¥i=[z(p—q) " a. 6)
For n=2, it is obvious and for =3, from hypothesis z*2#zr=z+z*2 and
by (5) ‘
2*2x=[z(p—q) Japzr—zqlz(p—¢) Iz
=[z(p—g)Japz—[2(p—g) Jxgz=[z(p—q) Pa.
Assume (6) for i+j<la, then for i+j=n,
ZFiegti
=[z(p—) I 2plz(p— @V 2~z (p—) V 2g[z(p—q) ] 'z
=[z(p—a) I 2xpz—[2(p—q) I 2xqz=[x(p—q) J* 'z,
and completes the proof.

It can be shown that A(p,1) is power-associative if and only if p is in
the center of A, hence we have

COROLLARY. Let A be an associative algebra over F, and ASF, then
A(p, 1+2p) is power—associative if and only if p is in the center of A.

In [4] Oehmke discussed the flexibility and powerassociativity in
A(p, 1—p).

3. Ideals

For a nonassociative algebra B, I is an ideal of B if I is a subspace of B
and for every z&€1, y&B, zy snd yz are in I. Denote A* the algebra with
multiplication {z, 3} =—;—(xy+yx) defined on the vector space B.

Let A be an associative algebra over F, and I be an ideal of A(p,q).
Assume pg=gp. Then for any z€A and yE€I, zty=zpy—ygz<] and
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yrx=ypx—zqy<I. Hence

z(p—Dy+y(p—g)z<l,

z(pta)y—y(@pta)z<cL €]
Thus I is an ideal of (A?*?)~ and an ideal of (A?"?)*. Setting z=p}q,
z==p—q respectively in (7), we have

(p—a9) p+9y<l,
yp+a) (p—a) <L ®

for any y&I. Denote the multiplication of the associative algebra A®+? by

o, that is, zoy=z(p+¢)y. We assume also zo(p—g)oy+yo(p—g)oz<I for
any x< A, y=I. Then by (7) and (8), the elements

zo(p—q) oy—yozo (p—q),
yoxo(p—g) —zoyo (p—q),
zoye (p—q) —yo (p—g) oz, and
yo(p—a@)ozx+zo(p—q) oy

are in I. Adding these elements, we have

zo(p—q)ey<€l and yo(p—g)oxel ()]

THEOREM 3. Let A be the algebra of all nXn matrices over a field F with
characteristic 0. If p-+q is a invertible element of A and p+ +q, then A(p,q)
is simple.

Proof. It can be checked that the map z — z(p-+¢)~! is an isomorphism
of A(p,g) onto A((p-+q)'p, (p-+g)71g). Since (p+¢) 'p commutes with
(p+49)'q, we may assume p+g=1 and pg=gp. Let I be a proper ideal of
A(p,g). Since A4 P=4, from (7), (8), (9) we have I is an ideal of A~
and the elements (p—q)y, y(p—9), z(p—a)y and y(p—¢g)z are in I for any
z€A, yI. Since the Lie algebra si(n, F) 1is simple for >2, I must be
the set of trace 0 matrices S or the center Z of A.

If I=S, then (p—gq) is a scalar matrix because (p—q)y< S and y(p—9q) €8
for any yeS. Let x be an element of A. Since (p—gq) +0,

Cz(p—a) " T(p—g)y=zy<l
and

y(@—)L(p—g) x]=yz<l

Hence I is an ideal of A which is impossible.
If I=Z then (p—q) €EZ because Z is the set of all scalar-matrices. Thus
for z€ A, l€Z, z(p—q)l=Ax €Z for some AEF, and contradiction.
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If n=1, then A is isomorphic to F and hence (p—g) is invertible. Thus
we can easily show that A(p,g) is a simple algebra.
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