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ON NONLINEARITY

By DonNG Pyo CHi

Many problems arising naturally in differential geometry and physics
involve the study of nonlinear differential equations. While linear or alge-
braic methods are still powerful and important in many cases, we might
claim the fundamental things that come naturally in “Nature” (in both mathe-
matical and physical sense) are nonlinear. In this paper, we shall discuss a
class of problems involving nonlinearity in differential geometry and mathe-
matical physics. Especially we want to discuss minimal surfaces, defor-
mation of complex structure and metrics with prescribed curvature properties
in differential geometry, and Yang-Mills equations and fluid mechanics in
mathematical physics.

1. Nonlinearity in differential geometry.

The simplest in this case is the one about geodesics on manifolds. Let
(M, g) be an n-dimensional manifold with the Riemannian metric

dst= i’lg,-,- (z)dzdz;
2,1=

then the geodesics on (M*, g) can be found as the solutions of nonlinear
system

xi+z.k1’ﬂixjxk=() G,j, k=1,2, -, n)
I

Then local existence is guaranteed by the corresponding theorem in ordinary
differential equations.

Now let us discuss the next simplest problem, that is the celebrated pla-
teau’s problem [2,3,4]. Plateau was a physicist about one hundred fifty
years ago. He studied empirically various properties of soap films. Every
physicist belives that soap film is the area minimizing surface with given
boundary in euclidean 3-space. But mathematically existence of soap film is
itself a fundamental problem. This problem is called plateau problem. More
precisely, we seek a smooth, simply connected parametric surface S in R3
spanning the given Jordan curve I such that the area of S is minimal. The
existence of such surface corresponds to the existence of a limit of a Cauchy
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sequence when we apply approximating procedure. Note that in general
Cauchy sequence need not have a limit. Of course the existence of a limit
in our situation is far more subtle and difficult. This problem is solved by
Douglas and Rado around 1930. The importance of this problem is well
appreciated by giving Douglas the first Fields medal in 1932. Let us explain
this problem more concretely. Let Q be the open unit disk in R3. We seek
a vector r(z,y)=(u,(z,5), uz(z,y), us(z,y)) that represents a surface S
spanning I in such a way that (1) 2Q is continuously mapped onto I" in a
one to one manner, (2) the area of S

A= (17 Gy ) 120 = 17 G, 49) 1241 T (a3, 05) |9y

is minimized, where |J(x, v)| is the Jacobian determinant of # and v with
respect to z,y. This can be simplified by the following arguments. For any
surface §= {r|r=u;(z,¥), wuz(z,y), us(z,y)} we write the first fundamental
form as

ds?=g,dz>+2g1sdxdy-+ goedy®
where gy1=r,"r;, g12=r,'ry, g=ry'r, Then
A(S) =IL (g11822— g1 V2dxdy
Using the inequality var—@< var<1/2{a+r} with equality holding if
and only if a=r, =0, we find
A(S) Sl/%” (gu+g22)dxdy
2

with equality holding if and only if g,=0 and g;;=gs. Such a first funda-
mental form is guaranteed by the existence of an isothermal parameters on
2-dimensional manifold. Hence in isothermal coordinates,

A©) =112 (entgmdzdy =1/2[[olIr.12+ 1r,12) dudsy.
That is, A(S) is minimized by minimizing the Dirichlet integral
[f 172+ 17as 2+ 7as) 3 oy

over all vectors r= (uy, %3, u3) that satisfy the boundary condition (1)on 3Q.
The corresponding Euler-Lagrange equation is simply Au;=Aus= Auz=0.
Hence the Plateau’s problem is to find harmenic vector r= (u1, us, us) satis-
fying nonlinear boundary eondition

lrzl?=1ry12 and r,-r,=0.

An important distinction between geodesics and minimal surfaces is the
following observation. The length of a rectifiable curve can be found by
approximating r by sufficiently small siraight line segments. However the area
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of a surface S cannot necessarily be found by approximating S by polyhedra.
Next let us discuss deformations of complex structure [1]. Deformations
of the complex structure of a Riemann surface M were first studied by Rie-
mann. He found that the number m (M) of independent complex parameters
on which the deformation depends can be completely described in terms of
the genus. And this number m (M) is called the number of moduli. For
higher dimensional complex manifolds M*, the analogous deformation prob-
lem is less well understood and is highly nonlinear. Existence of versal de-
formation of complex structure of a compact complex manifold is solved by
Kuranishi 1956. Let us explain Kuranishi’s theory to illustrate the nonlinear
character. Let M be given a complex structure V, with suitable distinguished
complex coordinates zy, ..., z,. Let V be another complex structure underlying
M with local coordinates i, ..., ¥, which is “near” to V. Then dy;=dz;+
Z'gbkjdzk with O small.
V is called an almost complex structure near the complex structure Vo. V
will be a true complex structure on M* if and only if the 7'M valued (0,
1) form

(D=Zq§kj(a/62j)d§k
satisfy an integrability condition. This condition is highly nonlinear and
given by dw=[w, w], where
8(adzs1 \ -+ N\dEs) = @—aa—;k—dgk/\dgsl/\--- Nz

and

[¢, g/)]:::Z'[qS"r"“p, Sbﬁl"'ﬁq]dzal/\'"/\dép/\\dzﬁl/\'"/\dzﬂq
where

¢=2¢“1"‘“Pdial/\"'/\dfap ¢=Zsbﬁl"‘ﬁqdfﬁl/\"'/\dqu,

¢=1°" s (resp. ¢P1---) is skew symmetric in ay, +-+, @z, and is a section of holo-
morphic tangent bundle 7’M, and if L=23¢&,(2)@/0z,, L'=27,(2)3/0z, are
two cross section of T’M, then d

[L, 113 5 2legy(s) — 2onp(2) 5

Note that in complex 1-dim case, [®, @ ]=0. Finally in this section, we
discuss about metrics with prescribed curvature. This problem is very im-
portant and very difficult. But recently this field becomes one of the very
exciting and main streams of Mathematics. (The author would .like to say
“the most”) This phenomena is mostly due to S.T. Yau at the Institute
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for Advanced Study [5, 6.
The natural differential operators that come in this problem are the Mon-
2
ge-Ampere operator L(¢) =det(?%aisﬁ) and the complex Monge-Ampere
s
operator L(¢) =det( 925, )

Another which is closely related to the above problem is the Einstein field
equation. If X g;dz’dzi is the Lorentz meiric to be determined, then the
operator involved in the Einstein field equation is L(gy;) =R;;— (R/2)gij
where R;; is the Ricci tensor and R is the scalar curvature of the Lorentz
metric. From the form of these differential operators, we can see how highly
nonlinear the problem is.

To explain the problems more precisely let us recall some definitions.
From the curvature tensor, one can derive the following quantities. Given
a point in the manifold and a two dimensional plane in the tangent space
at the given point, we can form the sectional curvature of the manifold at
this plane. Given a point and a tangent at a point, we can form the Ricci
curvature in this tangent direction by averaging all the sectional curvatures
of the two dimensional tangent planes that contains this tangent. Given a
point, we can form the scalar curvature at this point by simply averaging
all the sectional curvatures at this point. It is clear from these definitions
that the sectional curvatures give much more information than the others.

The simplest problem concerning the scalar curvature is to deform a metric
conformally to one with constant scalar curvature. The equation that is in-
volved in such a process is

=2 ju B Rt (a-2)

where 7z is the dimension of the manifold, R and R are scalar curvatures
of the undeformed and deformed metrics respectively. Due to the works of
Yamabe, Trudinger, Aubin, Berger, Eliason, Kazdan-Waner, Nirenberg,
Morser, Greene and Wu, we can comclude that in higher dimensions, that
is greater than 25 existence of complete metrics with negative scalar curva-
ture poses no topological restriction on the manifold. However, complete
metric with nonnegative scalar curvature do require topological restriction.
Lichnerowicz proved that for a compact spin manifold with positive scalar
curvature, there are no harmonic spinors. Using the Atiyah-Singer index
theorem, he proves that for a compact spin manifold with positive scalar
curvature, the A-genus is zero. Also Hitchin observed that the KO-theory
invariant is zero for a compact spin manifold with positive scalar curvature.
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The following is very formidable unsolved problem. Find a nice criterion
for a manifold to admit a metric with positive scalar curvature. The auther
likes to say that the above problem is very closely related to positive mass
conjecture in general relativity which is solved by R. Schoen and Yau
himself.

Now let us discuss very glorifying results concerning with Ricci curvature
of S. T. Yau. Since the Ricci curvature is given by a tensor and the integ-
rability condition is stronger, the problem of existence is considerably har-
der. The known integrability conditions are not complete, but we have
outstanding and beautiful results on the problem when the manifold concer-
ned is Kihler manifold. To explain the results recall some definitions and
basic resic results again. Let ¥g,:d2*®dz/ be a Kihler metric defined on a
compact complex manifold. ie Z;=g;, and the associated (1.1) form
o= v —12g;dz* \d% is closed. Then the (1.1) form

VT, @

—‘2—7?—2' FV= log(det (g;;)) d=r N\dz*

is closed, globally defined on the manifold and represents the first Chern
class. Also this (1,1) form is the Ricci form of the Kihler metric. Hence
for a (1,1) form to be the Ricci form of some Kihler metric, it must be
closed and represents the first Chern class. Calabi conjectured that this is the
only integrability condition, that is, if a closed (1,1) form X R;;dz'/\d%/
represents the first Chern class of the given complex manifold, then there
exists a Kiahler metric on it whose Ricci form is the given closed (1,1)
form 3 Ride /\dzi.

The equation that is needed to solve Calabi’s conjecture is of the following
form

) .
det it 5me7 | =€ det (g;;)
where ¢ is the unknown function and F is a smooth function so that fMeF

2,
is the volume of M. We require gﬁ""ﬁ%&%’ to be positive definite metric.

The existence and the uniqueness of the above equation is solved by S. T.
Yau. He used the continuity method to prove this fact. The basic steps in
the proof are giving the a priori estimates up to the third derivatives. The
essential difficulty lies in the estimate of sup|¢$|. The affirmative answer to
Calabi’s conjecture gives quite a lot of unexpected application in algebraic
geometry. One of them is the uniqueness of the complex structure of the
complex projective plane. Since the first Chern class of K-3 space is zero,
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hence we can give Ricci flat Kihler metric to it. Note that the simple con-
nectivity of the K-3 surface guarantees that it does not admit any flat metric.
For more details and results, consult the references in bibliography.

2. Nonlinearity in mathematical physies.

In recent years, there are tremendous amount of research on Yang-Mills
equations among both mathematicians and therectical physicists [1, 2, 3, 6.
Physicists belive that Yang-Mills theory is the most subtle and beautiful
synthesis of various forces in nature. Weinberg and Salam achieved Nobel
prizes through their work in this direction. Mathematicians came to have
interest in this part of mathematics (or rather say physics) because of their
holomorphic structure (some thing which is algebraic or holomorphic is
alway exciting stuff to mathematicians. For example, complex structure on a
given manifold. see Section 1.) Consider a principal G-bundle P(M, G)
over manifold M. Then Yang-Mills equations are the variational equations
for the norm square |F|2 of the curvature F of a connection A on P. In
physics terminology, |F|2 is the action, F the gauge field, A the gauge po-
tential and G the gauge group. We are interested in the case when the base
manifold is 4-dimensional. Then the Hodge xoperation on Q2(M) satisfies

%2 =1, If we let D4 be the covariant exterior derivative, then we have
F=D4s A=dA+ 1/2[A, A]. Then Yang-Mills equation becomes D +F=0.

In terms of component

0.F +[A, F w]=0
with
Fo=0,A,—8,A,+[ A, AL

Note that the nonlinearity comes from the noncommutativity of the corres-
ponding Lie algebra of the given Lie group G. If G is commutative, espe-
cially if G=S8!, the above equation is just Maxwell equation without source.
The solutions of the Yang-Mills equation are obtained via algebraic geometry.
(To be precise, the self dual solutions) This phenomena is rather surprising
when you compare it with the method mentioned in section 1. In section
1, especially Yau’s results are obtained after very difficult estimations.
Because of the identity **=1, we can decompose F=F*@F~ where F* are
the (41) eigenspaces of . Then we have |F|2=|F+|2 +|F |2 If F~=0,
then we say A is selfdual. The author explained the mothod of obtaining
all self-dual solutions in some place. It is still well-known unsolved
problem to find non self-dual (or non anti self~dual) solutions of the
Yang-Mills equations.

Now let us talk about fluid mechanics [4, 5.
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From the three basic principles of physics, i e. conservation of mass,
conservation of momentum, conservation of energy, together with some
reasonable assumptions, we are lead to the Euler equation for the perfect
fluid, i.e.,

aa‘t/t +Vv,;=—grad P,

div v,=0
v, is tangent to oM

where v, is the velocity vector field at time ¢z on manifold M and 7,,v, is the
covariant derivative and component-wise it is given by

. ovs .
W pud)i= ZJ: vraj -+ ;l Iivd

v, where ' is the christofell symbol as usual and P, is some unknown real
valued function on M called the pressure. In Euclidean space V v= (v-F)v.
The local existence and uniqueness of the solution of the Euler equation is
obtained via introducing some vector field on infinite dimensional manifold.
This result is a combined effort of Armold, Ebin and Marsden. And the
existence (and the uniqueness) of global solution i.e. the one defmed for
all ¢, is still open problem when dim M>3.

When we take into consideration the fact that fluid has viscocity, we
have the Navier-Stokes equation.

J%‘i — VvtV o= —grad P+ (forces)

ldiv v=0
v=0 on oM

The term v is an approximation to viscous forces. Thus the chances for
a global solution are increased. There are several results in this directions
due to Leray and Ladyzhenskaya. But there is no general theorem yet.
These difficulties with global solutions bear on the nature of turbulence. If
we are allowed to use more common language, it is still unsolved to show
that “water flows” even though we get Navier-Stokes equation from the
reasonable assumptions on fluid flow. Especially the existence of turbulence,
whatever its defintion may be, is unsolved. Most mathematicans believe that
turbulence is a result of successive losses of stability rather than non unique-
ness of solution.
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