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BANACH SPACES OF LIPSCHITS FUNCTIONS

By DOC\"G SUN SHIN

1. Introduction

Although the notion of Lipschitz continuity is very old and Lipschitz fun­
ctions have been studied for many years, the Banach space Lip (5, d) of
Lipschitz functions has not developed until quite recently. For example, the
following two problems are still open: If (5, d) is compact and infinite and
0<<<<1, (1) is lip (5, da) isomorphic with Co and (2) is Lip (S, da) iso­
morphic with m (cf. [6J)?

It is known that if (5, d) is an infinite compact subset of Euc1idean space,
the lip (5, d a ) CO<a<l) is isomorphic to Co and Lip (5, d a ) is isomorphic
\vith m. And if (5, d) is compact and O<a<l, then Lip (5, da ) and lip
(5, do) are isomorphic to subspaces of m and co, respectively. On the other
hand, if (5, d) is a metric space with inf {des, t) :s~t} =0, then Lip (5, d)
contains a subspace isomorphic to L and lip (5, da ) contains a complemented
subspace isomorphic to Co. (cf. [6J). The purpose of this paper is to study the
relations among Lip, lip, co, m and J2 p spaces and from our results on them
to investigate extensions of compact and weakly compact operators related to
lip (5, d a).

2. Preliminaries

Let (5, d) be a metric space. A complex valued function 1 defined on 5
is said to be a Lipschitz lunction if there exists a constant K such that

If(x) -fey) I ~kd(x,y), x,yES.

The smallest such constant K is called the Lipschitz norm of f which we
shall denote by Ilf1ld.

Evidently,
Ilf Ild=sup {I f (x) - fey) 1/d (x, y) : x, yES, x~y}.

For a complex valued function f defined on S which is bounded on S, the
sup norm 11/11« of f is defined by

Ilfll,,=sup{if(x) I: xES}.
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The collection of all bounded Lipschitz functions on (S, d) will be denoted
by Lip (S, d). It is well known that Lip (S, d) is a Banach space with the
norm 11·11 defined by

Ilfll = Ilflloo+ Ilflld fELip (S, d).
An important subset of Lip (S, d) consists of all those f in Lip (S, d)
which have the property that

I f(x) -fey) I/d(x,y) ~ 0 as d(x,y) -'> O.
This can more precisely be stated as follows: For any 8>0, there exists 0>0
such that

[I f(x) -fey) I/d(x,y) J <8, whenever d(x, y) <0.
This set of functions in Lip (S, d) will be denoted by lip (S, d). lip (S, d)
is a closed subspace of Lip (S, d). If O<a~ 1, then da is a metric on S,
where da(x,y) = (d(x,y»)a. Thus we may consider Lip (S, da) and lip (S, da)

for O<a~1.
It is known that if S is compact and O<a~l, then Lip (S, da) is isome­

trically isomorphic to the bidual lip (S, da) ** of lip (S, da) (cf. [6J).
Below we shall state a few definitions and lemmas necessary for our forth­

coming arguments.

DEFINITION 1. The Banach space m= 100 is defined to be the space of all
bounded sequences, x= {an} of complex numbers. The Banach space Co (a
subspace of m) is defined to be the space of all sequences converging to zero.

DEFINITION 2. Let l~p~oo and 1~i!<00. A Banach space X is said to
be an J!.pd space if for every finite dimensional subspace B of X there ex­
ists a finite dimensional subspace C of X such that C=;B and the distortion
d(e, 1p

n) ~i!, where n=dim C. (d(C, 1p
n) ~i! means that there exists an

isomorphism T from C onto 1/ such that !!TIIIIT-lll~i!)

A Banach space is said to be an J!.p space 1~p~ 00, if it is an 12p,).­

space for some 1~ i!<00. It is well known that the 12p space generalize the
Lp(fL) and C(K) spaces.

DEFINITION 3. A Banach space is said to be injective if it is complemented
in any Banach space containing it.

DEFINITION 4. Let X be a (real or complex) Banach space and B a closed
linear subspace of X. B is said to be quasi-complemented if there exists a cl­
osed linear subspace D of X such that B nD= {O}, with B+ D dense in X
(such a subspace D is called a quasi-complement for B).

DEFINITION 5. Let X be a Banach Space and {xn} be a sequence of elem-
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00

ents III X. The senes L; Xn is w. u. c. (weakly unconditional convergent) if for
n=1

00

every permutation (kn ) of indices the series I; Xkn converges weakly (may be
n=l

I

that the limit element does not exist) ; that is, for any y E X*, y(L;XkJ conver-
n=!

ges as 1-->eX).
=

The series L; X n is u. c. (unconditionally convergent) if for every permuta-
n=1

00

tion (k n) the series L: Xk n converges.
11=1

DEFINITION 6 Let X, Y be Banach spaces. A linear operator T from X
to Y is compact (resp. weakly compact) if and only if, for any bounded set
B in X, T (B) is relatively compact (resp. relatively weakly compact) in Y.

Let X, Y, Z be Banach spaces such that Z~X. Let T be a linear operator
from X to Y. A linear operator T from Z to Y is called an extension of T
if and only if T Ix= T.

LEMMA 1. If (S, d) is an infinite compact subset of Euclidean space, then
lip (S, d a) (O<a<l) is isomorphic with Co and Lip (S, da) is isomorphic with
L,,=m.

Proof. Refer to [2J, [6J.

LEMMA 2. Let X be a Banach space whose dual X* contains a subspace iso­
morphic to co. Then there exists a projection of X onto a subspace which is iso­
morphic to 11 : therefore, X* contains a subspace which is isomorphic to m= L,.

Proof. Refer to Cl].

LEMMA 3. An infinite dimensional subspace X of m is complemented in m
if and only if X is isomorphic to m.

Proof. Refer to [7J.

LEMMA 4.
(l) X is an 12c space if and only if X* is injective.
(2) Every infinite dimensional 12oo-space have a subspace isomorphic to co.
(3) A Banach space X is an 12p space (1 ::;:p::;: 00) if and only if X* is a 12

space where ; + ~ = 1 (q= 1, resp. 00 if p= 00, resp. 1).
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(4) Every injective space is an .1200 space
(5) A Banach space X is an .1200 space if and only if X** is injective, and
(6) A dual Banach space X (i. e., X= Y* for some Banach space y) is injec-

tive if and only if X is an .1200 space.

Proof. Refer to [9].

3. Theorems

THEOREM 1. (100) * does not contain a subspace isomorphic to co.

Proof. If (loo) * contains a subspace isomorphic to co. then by Lemma 2
there exists a projection of loo onto a subspace which is isomorphic to 1h
But by Lemma 3, 11 is isomorphic to 100, which gives a contradiction.
Hence (100) * does not contain a subspace isomorphic to co. This completes
the proof.

CoROLLARY 2. (1=) * is not injective.

Proof. If (1=) * is injective, then (1,) * contains a subspace isomorphic to Co
([7J). By Theorem 1, this is a contradiction. Hence (1=) * is not injective.

CoROLLARY 3. The following conditions are equivalent.
(a) There does not exist in (1=) * a w. u. c. series which is not u. c.•
(b) There does not exist in the space (100) * a w. u. c. series such that inf IIxn ll>O.

"
(c) (loo) * does not contain a subspace isomorphic to co.

Proof. It follows from Theorem 1 and [l].

THEOREM 4. If S is an infinite compact subset of Euclidean space and
O<a<l, then

(l) (1=) * does not contain a subspace isomorphic with lip (S, d a ) ,

(2) Lip (S, d a) * does not contain a subspace isomorphic with co, and
(3) Lip (S, da) * does not contain a subspace isomorphic with lip (S, da).

Proof. (1). By Lemma 1 and Theorem 1, lip (S, d a ) is isomorphic with
Co and (100) * does not contain a subspace isomorphic with co. Therefore
(1OO) * does not contain a subspace isomorphic with lip (S, da).

(2). By Lemma 1 and Theorem 1, Lip (S, d a) is isomorphic with loo and
(Lo) * does not contain a subspace which is isomorphic with co. Therefore,
Lip (S, da

) * does not contain a subspace isomorphic with co.
(3) . (3) is clear.
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THEOREM 5. Let (S, d) be an infinite compact subset of Euclidean space.
Then lip (S, d a) * (O<a<l) is a separable infinite dimensional .I2c space.

Proof Banach Space X is a separable infinite dimensional .I2c space if and
only if X* is isomorphic L ([9J). Since [lip (S, da ) *J* = Lip (S, d a ) is iso­
morphic to loo, (Lemma 1, [6J) lip (S, d a) * is a separable infinite dimensional
l\-space.

THEOREM 6. Let (S, d) be compact and infinite and O<a<l. Then the fo-
llowing assertions are equivalent:

(a) Lip (S, da) is injective,
(b) Lip (S, da ) is an .12= space,
(c) lip (S, d a) is an .1200 space,
(d) lip (S, d a) * is an J!1 space, and
(e) Lip (S, d a ) is isomorphic with L oc•

Moreover, the above equivalent conditions (a) r...., (e) implies that
(f) Lip (S, d a) * does not contain a subspace isomorphic with co,

Proof. (a) {::} (b) By Lemma 4, (6), the dual Banach space Lip (S, da ) =

[lip (S, d a) *J * is an injective space if and only if Lip (S, d a ) is an .12= space.
(a) {::} (c) By Lemma 4, (5), Lip (S, da) = [lip (S, da)*J* is injective if

and only if lip (S, d a) is .1200 space. Thus (a) and (c) are equivalent.
(d) {::} (b) If lip (S, da ) * is an J!l space, then by Lemma 4. (1), Lip (S, da)

= [lip (S, da) *J* is injective and hence Lip (S, da ) is an .1200 space «a) {::} (b».
Conversely, if Lip (S, da ) is an .1200 space, then Lip (S, d a ) is injective

«a){::}(b» and hence Lip (S,da) is an.l2oo space «a){::} (c».
Therefore lip (S, d a) * is an .121 space (cf. Lemma 4, (3»

(d) {::} (e) If Lip (S, da) is isomorphic with loo, then Lip (S, da) is injec­
tive. Since (a) ir.;lplies (d), lip (S, da ) * is an J!.1 space.

Conversely, if lip (S, d a ) * is an .121 space, then, since lip (S, da) * is a
separable infinite dimensional Banach space (cf: [6J, (iii». Lip (S, d a) =

[lip (S, d a
) *J* is isomorphic with loo (cf. [9J). Now (e) ==? (f) is clear

from Theorem 1.

We offer here an alternative proof for (a) ==? (f). We note that Lip (S, da
)

is isomorphic with a subspace of loo (cf. [6J). If Lip (S,da) is injcetive, then
loo is isomorphic with Lip (S, da) EBY for some subspace Y of 100" That is,
loo~Lip (S,da)EBY. Therefore (loo)*~Lip (S,d)*EBY*. Hence if Lip (S,da)*
contains a subspace isomorphic with co, then (loo) * also contains a subspace
isomorphic with co, which contradict to Theorem 1.
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THEOREM 7. Let X be separable infinite dimensional 121 space. Then X**
does not contain a subspace isomorphic to co.

Proof. By: [9J, "X* is isomorphic with loo and hence X**=(Zoc)*. Since
(loo) * does not contain a subspace isomorphic with co, X** also contains no
subspace isomorphic with co.

THEOREM 3. Let (S, d) be infinite compact subset of Euclidean space. Then
lip (S, da) * (O<a<l) has a complemented subspace isomorphic to l1'

Proof. lip (S, da) ** =Lip (S, d a) is isomorphic to loo ([6J) and loc =:0 co. By
Lemma 2, Lip (S, d) * has a complemented subspace isomorphic to l1'

Although Co [resp. lip (S, da)J is not complemented in loo [resp. Lip (8, da)
([6J) , Co is quasi-complemented in loo ([l1J, [12J).
We will show that lip (S, da) is qu~si-complemented in Lip (S, da ) •

THEOREM 9. If (S, d) is an infinite compact subset of Euclidean space,
lip (S, da) (O<a<l) is que:si-complemented in Lip (S, d a).

Proof. lip (S, d a) [resp. Lip (S, da)] is isomorphic to Co (resp. loo) by
Lemma 1. Since Co is quasi-complemented in loo, lip (S, da) is quasi-comple­
mented in Lip (S, d a ).

New we turn our arguments on the extension of compact and weakly com­
pact operators.

THEOREM 10. ,Let (S, d) be compact and infinite. Let O<a<1. If Lip (S, da)
is injective, then for any Banach space Y and Z, the following are true:

(1) Every compact operator T from Y to Lip (S, d a) [resp. lip (S, d a)J
has a compact extension T from Z (Z::::l Y) to Lip (S, d a) [resp. lip (S, da)].

(2) Every compact operator T from Lip (S, d a) [resp. lip (S, da)J to Y has
a compact extension T from Z::::lLip (S,da) [resp. Z::::llip (S,da)J to Y.

(3) Every weakly compact operator from lip (S, d a) to Y has a weakly com­
pact extension T from Z=:olip (S, d a) to Y.

Proof. Since we assumed that Lip (S, d a) IS injective, by Theorem 5,
Lip (S, d a) and lip (S, d a) are 12oo-spa"ce. The theorem follows from the
Lindenstrauss' characterization of the 12",,-space (cf. [7J, [9J).

CoROLLARY 11. Let (S, d) be a compact infinite subset of Euclidean space.
Then (1), (2), (3) ':stated in Theorem 10, hold for lip (S, d a) and Lip (S, d a)

for O<a<1.
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Proof. If (5, d) is a compact infinite subset of Euclicean space, then Lip
(S, d a ) is isomorphic with 1= and Lip (S, d a ) is injective (Th.6). Therefore,
by Theorem 10 our corollary is true.

We shall proveIhere that the counterpart of (3) in Theorem 10 does not
hold in general.

THEOREM 12. Let (5, d) be a compact infinite metric space. We assume that
inf {des, t) I s~t} =0. Then there is a weakly compu£t operator T from a
Banach space Y to lip (5, d a ) which does not have any weakly compact extension
T from a certain Banach space Z (Z=> Y) to lip (5, dt<).

Proof. By the result obtained in [6J, if inf {des, t) Is ~t} = 0, then
lip (5, d a ) contains a subspace isomorphic with co. Let T be the formal
identity operator from lz to co; that is, T maps the sequence (Xl> X2, X3,

...... ) in 12 to the same sequence in co. We can regard T as a linear operator
from lz to lip (5, d a ). Now since 12 is reflexive, it follows that T is weakly
compact.

Let Z=l= be the space of all bounded sequences. Then 1==>12• This is
true since lz is separable and separable Banach space can be imbedded in I""
[lOJ.

Now the weakly compact operator T from lz to lip (5, d a ) does not have
a weakly compact extension T from Z=l= to lip (S,d a ). In fact, if there
is an extension T, then T has to map a weakly convergent sequence in Z
to a norm convergent sequence in lip (5, d a

). However, if we let {ei} =i=l
be the natural basis of 12, then {ei} ""i=l converges weakly to 0 in Z. While
{Tei} =i=1 does not converge in the norm of lip (5, da ). Thus T has no
weakly compact extension.

THEOREM 13. Let T be an operator from a C(K) space (K= The Stcne­
Cheh compactification of the integers) into a L *. Then T is weakly compact.

Proof. If T is an operator from a C(K) into a Banach space X which does
not have a subspace isomorphic to co, T is weakly compact [lOJ.

By Theorem 1, T is weakly compact.
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