J. Korean Math. Soc. Vol. 18, No. 1, 1981

STRONGLY θ -CONTINUOUS FUNCTIONS

By Paul E. Long and Larry L. Herrington

1. Introduction

T. Noiri in $\lceil 2 \rceil$ has defined a function $f: X \to Y$ from a topological space X into a topological space Y to be strongly θ -continuous if for each $x \in X$ and each open V containing f(x) there exists an open set U containing x such that $f(Cl(U)) \subset V$. Clearly such functions are always continuous. The converse need not be true, however. If the reals R are given the open left ray topology, then the identity function $i: \mathbb{R} \to \mathbb{R}$ is continuous, but not strongly θ -continuous. We note that if X is regular, then any continuous $f: X \to Y$ is also strongly θ -continuous. Among the concepts needed for our investigation of strongly θ -continuous functions is that of a θ -closed set. The θ closure of a set $A\subseteq X$, denoted by $\mathrm{Cl}_{\theta}(A)$, is $\{x\in X: \text{ every closed neigh-}\}$ borhood of x meets A [4]. The subset A is θ -closed if $Cl_{\theta}(A) = A$. Likewise, the θ -interior of A, denoted by $Int_{\theta}(A)$ is $\{x \in X : \text{ some closed neigh-}\}$ borhood of x lies in A. A set A is called θ -open if $Int_{\theta}(A) = A$. Of course θ -open sets are open and θ -closed sets are closed. Furthermore, the complement of a θ -open set is θ -closed and the complement of a θ -closed set is θ -open. Lemma 3 of [4] shows that the collection of θ -open sets in a topological space (X, T) form a topology for X which we denote by T_{θ} . Finally, a net (x_{α}) in a topological space θ -converges to x if for each open V containing x the net (x_a) is eventually in Cl(V) [4].

2. Basic properties

THEOREM 1. For any $f: X \rightarrow Y$ the following are equivalent:

- (a) f is strongly θ -continuous.
- (b) The inverse image of a closed set is θ -closed.
- (c) The inverse image of an open set is θ -open.
- (d) For each $x \in X$ and each net $x_{\alpha} \to x$, then the net $f(x_{\alpha}) \to f(x)$.

Proof. (a) implies (b). Let $F \subset Y$ be closed and suppose that $f^{-1}(F)$ is

Received April 6, 1981.

not θ -closed in X. Then there is a point $x \notin f^{-1}(F)$ such that for every open U containing x, $\operatorname{Cl}(U) \cap f^{-1}(F) \neq \phi$. Since $f(x) \notin F$, Y - F is an open set containing f(x) having the property that no closed neighborhood of x will map into Y - F under f. Consequently f is not strongly θ -continuous at x. This contradiction implies that $f^{-1}(F)$ is θ -closed.

- (b) implies (c). Let V be open in Y. Then Y-V is closed and by (b) $f^{-1}(Y-V)$ is θ -closed. But $X-f^{-1}(Y-V)=f^{-1}(V)$ is θ -open.
- (c) implies (d). Let $x \in X$ and let $x_{\alpha} \xrightarrow{b} x$. Let V be any open set containing f(x). Then by (c), $f^{-1}(V)$ is θ -open and contains x. Thus, there exists an open set U such that $x \in U \subset Cl(U) \subset f^{-1}(V)$. The θ -convergence of x_{α} to x now implies that x_{α} is eventually in Cl(U) so that $f(x_{\alpha})$ is eventually in V. This shows that $f(x_{\alpha}) \to f(x)$.
- (d) implies (a). Suppose f is not strongly θ -continuous for some $x \in X$. Then there is an open set V containing f(x) such that for every open U containing x, $f(Cl(U) \subset V)$. New consider the directed set $\mathcal{Q} = \{(x_{\alpha}, Cl(U_{\alpha})\}$ ordered by reverse inclusion where U_{α} contains x and $x_{\alpha} \in Cl(U_{\alpha})$ such that $f(x_{\alpha}) \notin V$. Then the net $g: \mathcal{Q} \to X$ defined by $g(x_{\alpha}, U_{\alpha}) = x_{\alpha} \theta$ -converges to x, but the net fg does not converge to f(x). The contradiction implies that f is strongly θ -continuous at x.

Observing that a set is θ -closed in (X, T) if and only if it is closed in (X, T_{θ}) , Theorem 1 now allows us to conclude that $f: (X, T) \to Y$ is strongly θ -closed if and only if $f: (X, T_{\theta}) \to Y$ is continuous. Observe also that $i: (X, T) \to (X, T_{\theta})$ in Figure 1 is continuous.

Figure 1

With these facts it is easy to obtain several results about strongly θ -continuous functions from known facts about continuous functions. An example of these is given in Theorem 2.

THEOREM 2. Let $f, g: (X, T) \to Y$ be strongly θ -continuous and let Y be Hausdorff. Then the set $A = \{x: f(x) = g(x)\}$ is θ -closed in X.

Proof. Since $f, g: (X, T_{\theta}) \to Y$ are continuous it is well known [1, Theorem 1.5, p. 140] that $A \subset (X, T_{\theta})$ is closed. Thus $A \subset (X, T)$ is θ -closed.

THEOREM 3. Let $f: X \to Y$ be a strongly θ -continuous injective function and let Y be Hausdorff. Then X is Urysohn.

Proof. Let $x_1 \neq x_2$ belong to X. Then $f(x_1) \neq f(x_2)$. The Hausdorff hypothesis on Y now insures the existence of disjoint open sets V_1 and V_2 containing $f(x_1)$ and $f(x_2)$, respectively. Thus, there exist open sets U_1 and U_2 containing x_1 and x_2 , respectively, such that $f(\operatorname{Cl}(U_1)) \subset V_1$ and $f(\operatorname{Cl}(U_2)) \subset V_2$ because f is strongly θ -continuous. It follows that $\operatorname{Cl}(U_1) \cap \operatorname{Cl}(U_2) = \phi$ from which we conclude that X is Urysohn.

THEOREM 4. Let $f: X \to Y$ be strongly θ -continuous and injective. If Y is a T_1 -space, then X is Hausdorff.

Proof. Let, $x_1 \neq x_2$ belong to X. Then $f(x_1) \neq f(x_2)$ so there exists an open set V_1 containing $f(x_1)$ such that $f(x_2) \notin V_1$. Since f is strongly θ -continuous, there exists an open set U_1 containing x_1 such that $f(\operatorname{Cl}(U_1)) \subset V_1$. Thus, $x_2 \notin \operatorname{Cl}(U_1)$. Therefore, U_1 and $X - \operatorname{Cl}(U_1)$ are disjoint open sets separating x_1 and x_2 .

THEOREM 5. If $f: X \to Y$ is strongly θ -continuous and $g: Y \to Z$ is continuous, then the composition $gf: X \to Z$ is strongly θ -continuous.

Proof. Let V be open in Z. Then $g^{-1}(V)$ is open in Y so that $f^{-1}(g^{-1}(V)) = (gf)^{-1}(V)$ is θ -open by Theorem 1(c). Thus gf is strongly θ -continuous by Theorem 1.

It follows that the composition of two strongly θ -continuous functions is strongly θ -continuous.

LEMMA 1. The function $f: X \to Y$ is strongly θ -continuous if and only if for each subbasic open set $V \subset Y$, $f^{-1}(V)$ is θ -open in X.

Proof. The necessity follows from Theorem 1. Conversely, let $\{V_{\alpha}: \alpha \in \Delta\}$ be a subbasis for Y and assume that $f^{-1}(V_{\alpha})$ is θ -open for all $\alpha \in \Delta$. Then each open $V \subseteq Y$ can be written as

$$V = \bigcup \{ V_{\alpha_1} \cap V_{\alpha_2} \cap \cdots \cap V_{\alpha_n} : \{ \alpha_1, \alpha_2, \cdots, \alpha_n \} \subset \Delta \}$$
 so that $f^{-1}(V) = \bigcup \{ f^{-1}(V_{\alpha_1}) \cap f^{-1}(V_{\alpha_2}) \cap \cdots \cap f^{-1}(V_{\alpha_n}) \}$.

Since the finite intersection of θ -open sets is θ -open and the union of θ -open sets is θ -open [4, Lemma 3], $f^{-1}(V)$ is θ -open and hence f is strongly θ -continuous by Theorem 1.

THEOREM 6. Let $f: X \to \prod_{\alpha \in \Delta} X_{\alpha}$ be given. Then f is strongly θ -continuous if and only if the composition with each projection Π_{α} is strongly θ -continuous.

Proof. If f is strongly θ -continuous, then $II_{\alpha}f$ is strongly θ -continuous by the continuity of II_{α} and Theorem 5.

Conversely, let V be a subbasic open set in $\prod_{\alpha \in A} X_{\alpha}$. Then $V = II_{\alpha}^{-1}(W)$ for some open W in X_{α} . Thus $f^{-1}(V) = f^{-1}(II_{\alpha}^{-1}(W)) = (II_{\alpha}f)^{-1}(W)$ is θ -open due to $I_{\alpha}f$ being strongly θ -continuous and Theorem 1. Thus f is strongly θ -continuous by Lemma 1.

COROLLARY TO THEOREM 6. Let $f: X \rightarrow Y$ be a function and let $g: X \rightarrow X \times Y$, given by g(x) = (x, f(x)), be its graph map. Then f is strongly θ -continuous if and only if g is strongly θ -continuous. Furthermore, if $g: X \to X \times Y$ is strongly θ -continuous, then X is regular.

Proof. Only the last statement needs verification. If g is strongly θ -continuous and $x \in X$, then for any open U containing x, $U \times Y$ is open in $X \times Y$ and contains g(x) = (x, f(x)). Thus, there exists an open set U_0 containing x such that $g(Cl(U_0)) \subset U \times Y$. Consequently, $x \in U_0 \subset Cl(U_0) \subset U$ showing that X is regular.

LEMMA 2. Let
$$U_{\alpha_i} \subset X_{\alpha_i}$$
 for each $i=1,2,\cdots,n$. Then
$$U_{\alpha_1} \times U_{\alpha_2} \times \cdots \times U_{\alpha_n} \times \prod_{\alpha \neq \alpha_i} X_{\alpha} \subset \prod_{\alpha \in A} X_{\alpha}$$
 is θ -open if and only if U_{α_i} is θ -open in X_{α_i} for each $i=1,2,\cdots,n$.

Proof. Suppose $U_{\alpha_i} \subset X_{\alpha_i}$ is θ -open in X_{α_i} for each $i=1, 2, \dots, n$. Then for each i and each $x_i \in U_{\alpha_i}$, there exists an open V_{α_i} containing x_i such that $x_i \in V_{\alpha_i} \subset \operatorname{Cl}(V_{\alpha_i}) \subset U_{\alpha_i}$. Thus, for each $\{x_{\alpha}\} \in U_{\alpha_1} \times U_{\alpha_2} \times \cdots \times U_{\alpha_n} \times \prod X_{\alpha_n}$ $\{x\} \in V_{\alpha_1} \times V_{\alpha_2} \times \cdots \times V_{\alpha_n} \times \prod_{\alpha \neq \alpha'} X_{\alpha} \subset \operatorname{Cl}(V_{\alpha_1}) \times \operatorname{Cl}(V_{\alpha_2}) \times \cdots \times \operatorname{Cl}(V_{\alpha_n}) \times \prod_{\alpha \neq \alpha'} X_{\alpha} \subset \operatorname{Cl}(V_{\alpha_n}) \times \prod_{\alpha \neq \alpha'} X_{\alpha} \subset \operatorname{Cl}(V_{\alpha_n}) \times \operatorname{Cl}(V_{\alpha_n}) \times \prod_{\alpha \neq \alpha'} X_{\alpha} \subset \operatorname{Cl}(V_{\alpha_n}) \times \operatorname{C$ $U_{\alpha_1} \times U_{\alpha_2} \times \cdots \times V_{\alpha_n} \times \prod_{\alpha_n} X_{\alpha_n}$. This shows that $U_{\alpha_1} \times U_{\alpha_2} \times \cdots \times U_{\alpha_n} \times \prod_{\alpha_n} X_{\alpha_n}$ is θ open. The converse is clear.

THEOREM 7. Define $\prod_{\alpha} f_{\alpha} : \prod_{\alpha} X_{\alpha} \to \prod_{\alpha} Y_{\alpha}$ by $\{x_{\alpha}\} \to \{f_{\alpha}(x_{\alpha})\}$. Then $\prod_{\alpha} f_{\alpha}$ is strongy θ -continuous if and only if each $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ is strongly θ -continuous.

Proof. Let $V = V_{\alpha_1} \times V_{\alpha_2} \times \cdots \times V_{\alpha_n} \times \prod_{\alpha \neq \alpha_i} X_{\alpha}$ be a basic open set in $\prod_{\alpha} Y_{\alpha}$. Then if $f_{\alpha_i}^{-1}(V_{\alpha_i})$ is θ -open in X_{α_i} for each α_i , we have $(\prod_{\alpha} f_{\alpha})^{-1}(V) = f^{-1}(V_{\alpha_1}) \times f^{-1}(V_{\alpha_2}) \times \cdots \times f^{-1}(V_{\alpha_n}) \times \prod_{\alpha \neq i} X_{\alpha_i}$

is θ -open in $\prod X_{\alpha}$ by Lemma 2. This implies that $\prod f_{\alpha}$ is strongly θ -continuous.

Conversely, suppose $\prod f_{\alpha}$ is strongly θ -continuous. Let $V_{\alpha_i} \subset Y_{\alpha_i}$ be open.

Then $V = V_{\alpha_i} \times \prod_{\alpha \neq \alpha_i} Y_{\alpha}$ is subbasic open in $\prod_{\alpha} Y_{\alpha}$ and $(\prod_{\alpha} f_{\alpha})^{-1}(V) = f_{\alpha_i}^{-1}(V_{\alpha_i}) \times \prod_{\alpha \neq \alpha_i} X_{\alpha}$ is θ -open. Thus $f^{-1}(V_{\alpha_i})$ is θ -open in X_{α_i} which implies that f_{α_i} is strongly θ -continuous by Theorem 1.

3. Sufficient conditions for strong θ -continuity

THEOREM 8. Let $f: X \to Y$ be continuous. If Y is regular and T_1 , then f is strongly θ -continuous.

Proof. Let $x \in X$ and let V be an open set in Y containing f(x). Since Y is regular, there exists an open set W such that $f(x) \in W \subset Cl(W) \subset V$. This fact, along with the continuity of f, implies $x \in f^{-1}(W) \subset Cl(f^{-1}(W)) \subset f^{-1}(Cl(W)) \subset f^{-1}(V)$. Now let $U = f^{-1}(W)$. Then $f(Cl(U)) \subset V$ showing that f is strongly θ -continuous.

If $f: X \to Y$ is a function and $G(f) = \{(x, f(x)) : x \in X\}$ denotes the graph of f, we define G(f) to be θ -closed with respect to $X \times Y$ if for each $(x, y) \notin G(f)$ there exist open sets U and V containing x and y respectively, such that $(Cl(U) \times Cl(V)) \cap G(f) = \phi$. With this definition we are now ready to prove another sufficient condition for strong θ -continuity.

THEOREM 9. Let $f: X \to Y$ have a θ -closed graph with respect to $X \times Y$. If Y is minimal Hausdorff, then f is strongly θ -continuous.

Proof. We use the fact that a minimal Hausdorff space is semi-regular and H-closed [6, 17M, p. 129]. Thus, let $x \in X$ and let V be a regular-open set containing f(x). Then Y - V is regular closed and for each $y \in Y - V$, $(x, y) \notin G(f)$. The hypothesis now asserts the existence of open sets $U_y(x)$ and W(y) containing x and y, respectively, such that $(\operatorname{Cl}(U_y(x)) \times \operatorname{Cl}(W(y)) \cap G(f) = \phi$ or that $f(\operatorname{Cl}(U_y(x)) \cap \operatorname{Cl}(W(y)) = \phi$. The collection $\{W(y): y \in Y - V\}$ forms an open cover of the regular-closed. hence H-closed, subset Y - V. Consequently, there is a finite number $\{W(y_i): i=1, 2, \dots, n\}$ such that $Y - V \subset \bigcup_{i=1}^n \operatorname{Cl}(W(y_i))$. Now let $U = \bigcap_{i=1}^n U_{y_i}(x)$. Then $f(\operatorname{Cl}(U)) \subset V$ showing that f is strongly θ -continuous.

The graph of $f: X \to Y$ is called θ -closed with respect to X if for each $(x, y) \notin G(f)$ there exist open sets U and V containing x and y, respectively, such that $(\operatorname{Cl}(U) \times V) \cap G(f) = \phi$.

A function $f: X \to Y$ is called θ -continuous if for each $x \in X$ and each open

V containing f(x) there exists an open set U containing x such that $f(Cl(U)) \subset Cl(V)$. Of course a strongly θ -continuous function is θ -continuous. The next theorem shows when a θ -continuous function will also be strong θ -continuous.

THEOREM 10. If Y is rim-compact and $f: X \rightarrow Y$ is a θ -continuous function whose graph is θ -closed with respect to X, then f is strongly θ -continuous.

Proof. Let $x \in X$ and let W be any openset containing f(x). Since Y is rim-compact, there exists an open set V such that $f(x) \in V \subset W$ whose boundary Bd(V) is compact. For each $y \in Bd(V)$, $(x, y) \notin G(f)$ so there are open sets $U_y(x)$ and S(y) such that $(Cl(U_y(x)) \times (S(y)) \cap G(f) = \phi$ or that $f(\operatorname{Cl}(U_{\mathbf{v}}(x)) \cap S(y) = \phi$ because G(f) is θ -closed with respect to X. The compactness of Bd(V) now implies there are a finite number of open sets $S(y_1), S(y_2) \cdots, S(y_n)$ from the open cover $\{S(y): y \in Bd(V)\}$ which cover Bd(V). Since f is θ -continuous, there is an open set $U_0(X)$ such that $f(\mathrm{Cl}(U_0))\subset\mathrm{Cl}(V)$. Consider $U=U_0(x)\prod_{i=1}^n\cap [\cap U_{y_i}(x)]$. It follows that U is open and $Cl(U) = Cl(U_0 \cap [\bigcap_{i=1}^n U_{y_i}(x)]) \subset Cl(U_0) \cap [\bigcap_{i=1}^n Cl(U_{y_i}(x)]].$

Thus.

$$f(\operatorname{Cl}(U)) \cap (Y - V) = f(\operatorname{Cl}(U)) \cap \operatorname{Bd}(V)$$

$$\subset \bigcup_{i=1}^{n} [f(\operatorname{Cl}(U)) \cap S(y_i)] \subset \bigcup_{i=1}^{n} [f(\operatorname{Cl}(U_{y_i}(x)) \cap S(y_i)] = \phi.$$

Therefore, $f(Cl(U)) \subset V \subset W$ showing that f is strongly θ -continuous.

THEOREM 11. Let Y be compact. If $f: X \rightarrow Y$ has a graph which is θ -closed with respect to X, then f is strongly θ -continuous.

Proof. Let $x \in X$ and let V be open and contain f(x). Then for each y in the compact set Y-V, we have $(x, y) \notin G(f)$. Theree there exist opensets $U_y(x)$ and W(y) containing x and y, respectively, such that $f(Cl(U_y(x))) \cap W(y) = \phi$ because G(f) is θ -closed with respect to X. Thus, there exists a finite subcover $\{W(y_i): i=1, 2, \dots, n\}$ of Y-V and the corresponding $U_{y_i}(x)$ have the property that $f(\bigcap_{i=1}^n \operatorname{Cl}(U_{y_i}(x))) \cap [\bigcup_{i=1}^n W(Y_i)] = \phi$. But $Cl(\bigcap_{i=1}^n U_{y_i}(x)) \subset \bigcap_{i=1}^n Cl(U_{y_i}(x))$, so if we let $U = \bigcap_{i=1}^n U_{y_i}(x)$ then we have $f(\operatorname{Cl}(U)) \cap [\bigcup_{i=1}^n W(y_i)] = \phi$. Consequently, $f(\operatorname{Cl}(U)) \subset V$ showing that f is strongly θ -continuous at x.

THEOREM 12. If $f: X \to Y$ is strongly θ -continuous and Y is Hausdorff, then G(f) is θ -closed with respect to X.

Proof. Let $x \in X$ and $y \neq f(x)$. Then there are open disjoint sets W and V containing f(x) and y, respectively. Since f is strongly θ -continuous, there is an open set U containing x such that $f(Cl(U)) \subset W$. Therefore $f(Cl(U)) \cap V = \phi$. This shows that G(f) is θ -closed with respect to X.

THEOREM 13. Let Y be a compact Hausdorff space. Then $f: X \to Y$ is strongly θ -continuous if and only if G(f) is θ -closed with respect to X.

Proof. Theorems 11 and 12.

4. Properties preserved by strongly θ -continuous functions

A set A in a topological space X is defined to be an H-set [4] if for each cover of A with open sets in X, there exists a finite number of the covering sets whose closures cover A.

THEOREM 14. Let $f: X \rightarrow Y$ be strongly θ -continuous. If $A \subset X$ is an H-set, then f(A) is compact.

Proof. Let A be an H-set in X and let \mathfrak{P} be an open cover of f(A). For each $a \in A$ there is an open set $V_a \in \mathfrak{P}$ such that $f(a) \in V_a$. Since f is strongly θ -continuous, there exists an open set U_a containing a such that $f(\operatorname{Cl}(U_a)) \subset V_a$. The collection $\{U_a : a \in A\}$ now forms an open cover of A so there exists a finite subcollection $U_{a_1}, U_{a_2} \cdots, U_{a_n}$ such that $A \subset \bigcup_{i=1}^n \operatorname{Cl}(U_{a_i})$ because A is an H-set. Thus, $f(A) \subset f(\bigcup_{i=1}^n \operatorname{Cl}(U_{a_i})) = \bigcup_{i=1}^n f(\operatorname{Cl}(U_{a_i})) \subset \bigcup_{i=1}^n V_{a_i}$ so that \mathfrak{P} has a finite subcollection $\{V_{a_i} : i=1, 2, \cdots, n\}$ which covers f(A). Consequently, f(A) is compact.

COROLLARY to THEOREM 14. If $f: X \rightarrow Y$ is strongly θ -continuous, surjective and X is H-closed, then Y is compact.

COROLLARY to THEOREM 14. A strongly θ -continuous real valued function defined on an H-closed space X is bounded.

A function $f: X \rightarrow Y$ is defined to be regular-open [3, Definition 3.1] if the image of every regular-open set is open.

THEOREM 15. Let $f: X \rightarrow Y$ be a regular-open and strongly θ -continuous function of X onto Y. If X is locally H-closed and Y is Hausdorff, then Y is locally compact.

Proof. Let $y \in Y$ and let $x \in X$ such that f(x) = y. Since X is locally Hclosed, there exists a regular-openset H such that $x \in H$ and Cl(H) is an H-set. By Theorem 14, f(Cl(H)) is compact, hence closed in the Hausdorff space Y. Now since f is regular-open, the open set f(H) contains f(x) = y and $Cl(f(H)) \subseteq f(Cl(H))$ is compact. Therefore, Y is locally compact.

A Hausdorff space X is called C-compact if each closed set in X is an H-set $\lceil 5 \rceil$.

THEOREM 16. Let $f: X \rightarrow Y$ be strongly θ -continuous and let X be a C-compact Hausdorff space and let Y be Hausdorff. If f is bijective, then X is homeomorphic to Y and both X are compact.

Proof. Since f is strongly θ -continuous, f is continuous. Furthermore, if $A \subseteq X$ is closed, then A is an H-set so that f(A) is compact by Theorem 14 and hence closed in the Hausdorff space Y. This shows that f is a homeomorphism from X onto Y. Now since X is itself an H-set, f(X) = Y is compact again by Theorem 14. It follows that both X and Y are compact since they are homeomorphic.

References

- 1. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass.
- 2. T. Noiri, On δ-continuous functions, Jour. of the Korean Math. Soc., 16, No. 2 (1980) pp. 161-166.
- 3. M. K. Singal and A. R. Singal, Almost-continuous mappings, Yokohama Math. J. **16** (1968) pp. 63-73.
- 4. N. V. Velicko, H-closed topological spaces, Mat. Sb., 70(112) (1966) pp. 98-112 = Amer. Math. Soc. Transl. 78(2) (1968) pp. 103-118.
- 5. G. Viglino, C-compact spaces, Duke Math. J. 36 (1969), pp. 761-764.
- 6. Stephen Willard, General topology, Addison-Wesley Publ. Co. Reading, 1970.

The University of Arkansas at Fayetteville and

LSU at Alexandria