21

J. Korean Math. Soc.
Vol. 18, No. 1, 1981

STRONGLY 6¢-CONTINUQUS FUNCTIONS

By PauL E. LONG AND LARRY L. HERRINGTON

1. Introduection

T. Noiri in [2] has defined a function f:X— Y from a topological space
X into a topological space Y to be strongly 0—continuous if for each x=X and
each open V containing f(z) there exists an open set U containing z such
that f(CL(U)) < V. Clearly such functions are always continuous. The converse
need not be true, however. If the reals R are given the open left ray to-
pology, then the identity function i:R — R is continuous, but not strongly
O-continuous. We note that if X is regular, then any continuous f: X — Y
is also strongly f-continuous. Among the concepts needed for our investig-
ation of strongly @-continuous functions is that of a f-closed set. The 6-
closure of a set ACX, denoted by Cl;(4), is {zr=X: every closed neigh-
borhood of x meets A} [4]. The subset A is f—closed if Cl,(A) =A. Like-
wise, the f—interior of A, denoted by Int,(A4) is {xr=X: some closed neigh-
borhood of z lies in A}. A set A is called #-open if Int;(A)=A. Of co-
urse f-open sets are open and f-closed sets are closed. Furthermore, the
complement of a #-open set is f-closed and the complement of a 6#-closed
set is #-open. Lemma 3 of [4] shows that the collection of #-open sets in
a topological space (X, T) form a topology for X which we denote by T.
Finally, a net (z,) in a topological space @—converges to z if for each open
V containing z the net (z,) is eventually in CI(V) [4].

2. Basic properties

THEOREM 1. For any f:X—Y the following are equivalent:

(a) f is strongly O—continuous.

(b) The inverse image of a closed set is O—closed.

(¢c) The inverse image of an open set is G-open.

(d) For each =X and each net Ta 7> T, then the net f(zx,)—f(x).

Proof. (a) implies (b). Let FC Y be closed and suppose that f~1(F) is
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not @—closed in X. Then there is a point z & f~1(F) such that for every
open U containing z, Cl(U) Nf1(F) #¢. Since f(z)&EF, Y—F is an open
set containing f(z) having the property that no closed neighborhood of =z
will map into Y—F under f. Consequently f is not strongly f—continuous at
z. This contradiction implies that f~1(F) is 0-closed.

(b) implies (c). Let V be open in Y. Then Y—V is closed and by (b)
FHY—V) is f—closed. But X—f1(Y—V)=f"1(V) is f-open.

(c) implies (d). Let z&X and let z, > z. Let V be any open set con-

taining f(z). Then by (c¢), f1(V) is f-open and contains z. Thus, there
exists an open set U such that z€ U <Cl(U) Sf 1(V). The @-convergence
of z, to z now implies that z, is eventually in ClI(U) so that f(z,) is
eventually in V. This shows that f(z,) — f(2).

(d) implies (a). Suppose f is not strongly @-continuous for some z€ X.
Then there is an open set V containing f(z) such that for every open U
containing z, f(Cl(U) ¢ V. New consider the directed set D= {(z,, C1(U,)}
ordered by reverse inclusion where U, contains z and z, €CI(U,) such
that f(z,) € V. Then the net g:@—X defined by g(z,, U,) =z, f-converges
to z, but the net fz does not converge to f(z). The contradiction implies
that f is strongly f-continuous at z.

Observing that a set is f—closed in (X, T) if and only if it is closed in
(X, Ty), Theorem 1 now allows us to conclude that f: (X, T)—Y is strongly
O-closed if and only if f: (X, T,) — Y is continuous. Observe also that i: (X,
T)— (X, T,) in Figure 1 is continuous.

(X, T)——f—>Y
i
—f
(X, Y,)
Figure 1

With these facts it is easy to obtain several results about strongly
f~-continuous functions from known facts about continuous functions. An
example of these is given in Theorem 2.

THEOREM 2. Let f,g:(X, T)—Y be strongly O—continuous and let Y be
Hausdorff. Then the set A= {z:f(z)=g(x)} is O-closed in X.

Proof. Since f,g:(X, T,) — Y are continuous it is well known [1, Theo-
rem 1.5, p. 140] that Ac (X, T,) is closed. Thus A (X, T) is @-closed.
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THEOREM 3. Let f:X—Y be a strongly B-continuous injective function and
let 'Y be Hausdorff. Then X is Urysohn.

Proof. Let z;#z; belong to X. Then f(x)) #f(x;). The Hausdorff
hypothesis on Y now insures the existence of disjoint open sets V; and V,
containing f(z;) and f{(x;), respectively. Thus, there exist open sets U,
and U, containing z; and x, respectively, such that f(Cl(U,))<=V; and
f(C1(U,y)) =V, because f is strongly f-continuous. It follows that Cl(U,)
NCI(U;) =¢ from which we conclude that X is Urysohn.

THEOREM 4. Let f: X—Y be strongly O-continuous and injective. 1f Y is a
Ty-space, then X is Hausdorff.

Proof. Let. r;#x; belong to X. Then f(x,) #f(x;) so there exists an
open set V, containing f{(z;) such that f(z,) € V). Since f is strongly -
continuous, there exists an open set U, containing z; such that f(Cl(U;))
<V, Thus, z, ¢Cl(U;). Therefore, U, and X — CI(U,) are disjoint open
sets separating z; and z..

THEOREM 5. If f: X — Y is strongly O-continuous and g.Y — Z is continu-
ous, then the composition gf: X — Z is strongly O-continuous.

Proof. Let V be open in Z. Then g (V) is open in Y so that f1(g™?
(V))={(gf)"1(V) is f~open by Theorem 1(c). Thus gf is strongly 6#-con-
tinuous by Theorem 1.

It follows that the composition of two strongly 6-continuous functions is
strongly @-continuous.

LEMMA 1. The function f:X—Y is strongly O-continuous if and only if for
each subbasic open set VY, f1(V) is 0-open in X.

Proof. The necessity follows from Theorem 1. Conversely, let {V,:ac 4}
be a subbasis for Y and assume that f71(V,)is f-open for all ac 4. Then
each open V C Y can be written as

V=U{Va N Vg N0V, ey, ag, oy a,} ©4)
so that f~1(V)=U {f (V) N (V) N NV, )L.
Since the finite intersection of f-open sets is 8-open and the union of @-
open sets is f-open [4, Lemma 3], f1(V) is #-open and hence f is stro-
ngly f-continuous by Theorem 1.

THEOREM 6. Let f:X — [1X, be given. Then f is strongly 0-continuous if

acd

and only if the composition with each projection II, is strongly O-continuous.
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Proof. If f is strongly O-continuous, then /I, f is strongly @-continuous
by the continuity of JI, and Theorem 5.
Conversely, let V be a subbasic open set in [[X,. Then V=10,1(W) for
acd

some open W in X,. Thus f~1(V)=F1{I, "1 (W))=I,f) (W) is 6-open
due to Z,f being strongly @-continuous and Theorem 1. Thus f is strongly
f-continuous by Lemma 1.

COROLLARY TO THEOREM 6. Let f:X—Y be a function and let g: X—X XY,
given by g(z)=(x,f(x)), be its graph map. Then f is strongly O-continuous
if and only if g is strongly O-continuous. Furthermore, if g:X—XXY is
strongly O-continuous, then X is regular.

Proof. Only the last statement needs verification. If g is strongly f-con-
tinuous and r& X, then for any open U containing z, UXY is open in
XX Y and contains g(z) = (z, f(z)). Thus, there exists an open set U, con-
taining z such that g(Cl(Uy)) cUX Y. Consequently, zeU,=Cl(Uy)<cU
showing that X is regular.

LEMMA 2. Let U, <X,, for each i=1,2,---, n. Then
Uy XUy X XU X [ X, HAX,,,

axai

is G~open if and only if U,; is O~open in X,, for each i=1,2, -, n.

Proof. Suppose U,, X, is 0-open in X,, for each i=1,2, ---, n. Then for
each i and each x;€U,, there exists an open V,; containing x; such that
z;€ V,,< Cl(V,)CU,, Thus, for each {z,} €Uy XUpgyX+X U, X [l X,

axai
{2} € Viy X Vi X+ X Vi, X [T Xa & CL(Vi) XCU(Vigy) X -2+ XCU(Vi) X [T X

akai

Uagy X Upgy X +++ XV, X 11 X,. This shows that U, XUy, X+ XU, X1X, is 6-

axai aiai

open. The converse is clear.

TUEOREM 7. Deﬁne l;lfa: UXa")E[ Ya by {xa} - {fa (xa)} . Then I;[fa is

strongy O—-continuous if and only if each f,:X,— Y, is strongly O—continuous.

Proof. Let V=V, X Vg, X+ XV, X[1X, be a basic open set in [17,.

Then if f,71(V,) is f-open in X, for ueach a;, we have ’
(Ufa) WI(V) ==f—1 ( Va],) xf—I (Vaz) K oer Xfrl(Van) Xagug(a

is f-open in [I1X, by Lemmma 2. This implies that (]f, is strongly 6-con-

tinuous.
Conversely, suppose [1f, is strongly #-continuous. Let V,,C Y, be open.
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Then V=V, <[] Y, is subbasic open in || ¥, and (I f) V) =f o, (Ve

axa; @ (4

<[ X, is ¢-open. Thus f~1(V,,) is f~open in X.; which implies that f,, is

axaf

strongly #-continuous by Theorem 1.

3. Sufficient conditions for strong @-continuity

THEOREM 8. Let f:X— Y be continuous. I1f Y is regular and T, then f is
strongly O—continuous.

Proof. Let x€ X and let V be an open set in Y containing f(2). Since
¥ is regular, there exists an open set W such that f(r)& WCl(W)cC V.
This fact, along with the continuity of £, implies x€ f1(W) < Cl(f!
(WHf 1 CHW))=f 1(V). Now let U=f1(W). Then f(CL(U))CV
showing that f is strongly #-continuous.

If f1X—7Y is a function and G(f)= {(x,f(2)) 2 X} denotes the graph
of f, we define G(f) to be O-closed with respect to XY if for each (x,y)
€ G(f) there exist open sets U and V containing » and y respectively, such
that (Cl(U) XCI(V)) NG(f)=¢. With this definition we are now ready to
prove another sufficient condition for strong f-continuity.

THEOREM 9. Let f:X — Y have a O-closed graph with respect to X (Y.
1f Y is minimal Hausdorff, then f is strongly O-continuous.

Proof. We use the fact that a minimal Hausdorff space is semi-regular and
H-closed [6, 17M, p.129). Thus, let r=X and let V be a regular-open set
containing f(2). Then Y—V is regular closed and for each yeY -V, (z,y)
&G(f). The hypothesis now asserts the existence of open sets U,(z) and
W(y) containing x and y, respectively, such that (Cl(U,(x)) XCl{W(y))
NG(f)=¢ or that f(CI(U,(x)) NCH{(W(y))=¢. The collection {W(y):ye
Y—V} forms an open cover of the regular-closed. hence H-closed, subset
Y— V. Consequently, there is a finite number {W(y,) :i=1,2,---,n} such

that Y=V O CLW(3)). Now let U=1 U, (x). Then fCLU)) =V

showing that f is strongly f-continuous.
The graph of f: X — Y is called 0-closed with respect to X if for each
(z,y) €G(f) there exist open sets U and V containing = and y, respec-

tively, such that (Cl(U) XV)NG(f)=4¢.

A function f:X—Y is called f-continuous if for each x& X and each open



26 Paul E. Long and Larry L. Herrington

V containing f(z) there exists an open set U containing z such that
FCI(U)) <=CI(V). Of course a strongly f-continuous function is f-continu-
ous. The next theorem shows when a f-continuous function will also be
strong #-continuous.

THEOREM 10. If Y is rim—compact and f:X—Y is a O—continuous function
whose graph is O—closed with respect to X, then f is strongly O-continuous.

Proof. Let z& X and let W be any openset containing f(z). Since Y is
rim-compact, there exists an open set V such that f(z) € V& W whose bo-
undary Bd(V) is compact. For each yeBd(V), (2,3 & G(f) so there are
open sets U,(z) and S(y) such that (CI(U,(z)) X (S(3)) NG(f)=6¢ or that
FCLU, (@) NS(y) =¢ because G(f) is O-closed with respect to X. The
compactness of Bd(V) now implies there are a finite number of open sets
S(y), S{ys) -, S(y,) from the open cover {S(») :y € Bd(V)} which cover
Bd(V). Since f is f-continuous, there is an open set Uy(X) such that

F(CI(UR)=CI(V). Consider U= Uo(x)L(l][ﬂ U,(x)]. It follows that U is

open and CL(U) =CU(Us NN Uy, ()] < CL(Us) NN CL(T,, ()]

Thus,
FCHD)) N (Y= V) =F(CI(U)) NBA(V)

< BLACUWY) NS I ULFCLT,,(2)) NS (3=,
Therefore, f(Cl(U)) < V< W showing that f is strongly @-continuous.

THEOREM 11. Let Y be compact. I1f f:X—Y has a graph whick is 0-closed
with respect to X, then f is strongly O-continuous.

Proof. Let z&X and let V be open and contain f(x). Then for each
y in the compact set Y—V, we have (z,5) €G(f). Theree there exist
opensets U,(z) and W(y) containing z and y, respectively, such that
FCL(U,(x))) N W(p) =6 because G(f) is O~closed with respect to X. Thus,
there exists a finite subcover {W({y,): i=1,2, «--,2} of Y—V and the corre-

sponding U,,(z) have the property that f (élCl(Uy‘. (x))) ﬂ[QIW(Y,-)]=¢.
But CL(A\ U, ())  NCL(U,,(2)), so if we let U=NU,,(z) then we have

FCIW) NLU W(3)1=¢. Consequently, fF(CL(U))< V showing that f is

strongly @-continuous at z.



Strongly f-continuous functions 27

THEOREM 12. If F:X—Y is strongly O-continuous and Y is Hausdorff, then
G(f) is O-closed with respect to X.

Proof. Let z&€X and y#f(z). Then there are open disjoint sets W and
V containing f(z) and y, respectively. Since f is strongly O-continuous,
there is an open set U containing z such that f(CI(U)) =W. Therefore
F(CI(U)) N V=¢. This shows that G(f) is O-closed with respect to X.

THEOREM 13. Let Y be a compact Hausdorfl space. Then f:X— Y is
strongly O-continuous if and only if G(f) is O-closed with respect to X.

Proof. Theorems 11 and 12.

4. Properties preserved by strongly 6-continuous functions

A set A in a topological space X is defined to be an H-ser [4] if for
each cover of A with open sets in X, there exists a finite number of the
covering sets whose closures cover A.

THEOREM 14. Let f:X—Y be strongly O-continuous. If ACX is an H-set,
then f(A) is compact.

Proof. Let A be an H-set in X and let 9 be an open cover of f(4).
For each a€ A there is an open set V,€% such that f(a) € V,. Since f is
strongly #-continuous, there exists an open set U, containing ¢ such that
FCI(UY)Y<V,. The collection {U,:as A} now forms an open cover of 4

so there exists a finite subcollection U,,, U+, U,, such that ACEJlCl (Ua,)

because A is an H-set. Thus, f(A)c f (Ql(:l(Ua;)) = {U:f ClWw,)) < .L_jl Vi
so that Y has a finite subcollection {V,;:i=1, 2, +--,n} which covers f(A).
Consequently, f(A) is compact.

COROLLARY to THEOREM 14. If f:X—Y is strongly O-continuous, surjective
and X is H-closed, then Y is compact.

COROLLARY to THEOREM 14. A strongly O-continuous real valued function
defined on an H-closed space X is bounded.

A function f:X—Y is defined to be regular—open [3, Definition 3.17 if
the image of every regular-open set is open.

THEOREM 15. Let f:X—Y be a regular-open and strongly O-continuous fu-
nction of X onto Y. If X is locally H-closed and Y is Hausdorff, then Y is
locally compact.
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Proof. Let y€Y and let z&X such that f(z)=y. Since X is locally H-
closed, there exists a regular-openset H such that z&H and CI(H) is an
H-set. By Theorem 14, f(CI(H)) is compact, hence closed in the Haus-
dorff space Y. Now since f is regular-open, the open set f(H) contains
f(z)=y and CI(f(H))<f(CI(H)) is compact. Therefore, Y is locally
compact.

A Hausdorff space X is called C-compact if each closed set in X is an
H-set [5].

THEOREM 16. Let f:X—Y be strongly O-continuous and let X be a C—com-
pact Hausdorff space and let Y be Hausdorff. If f is bijective, then X is ho-
meomorphic to Y and both X are compact.

Proof. Since f is strongly f-continuous, f is continuous. Furthermore, if
AcX is closed, then A is an H-set so that f(A) is compact by Theorem
14 and hence closed in the Hausdorff space Y. This shows that f is a ho-
meomorphism from X onto Y. Now since X is itself an H-set, f(X)=Yis
compact again by Theorem 14. It follows that both X and Y are compact
since they are homeomorphic.
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