FIBERWISE PL INVOLUTIONS OF FIBERED 3-MANIFOLDS

BY HAYON KIM AND JEHPILL KIM

1. Introduction

As in our previous paper [4] with K. W. Kwun, an involution h of a 3-manifold X is said to be *fiberwise* if there is a fibering of X over S^1 such that each fiber is invariant under h. In this paper, we give a new characterization of fiberwise involutions of closed P^2 -irreducible 3-manifolds. Unlike the situation in [4], however, involutions are not assumed to have fixed points.

A fibering of a group G (over \mathbb{Z}) is an epimorphism $\varepsilon_0: G \to \mathbb{Z}$ whose kernel is finitely generated. Let X be a closed 3-manifold admitting a fibering over S^1 and consider the set of fiberings of $\pi_1(X, x_0)$, $x_0 \in X$. The automorphism group $\operatorname{Aut} \pi_1(X, x_0)$ of $\pi_1(X, x_0)$ acts from the right on this set by usual composition of maps. Moreover, since \mathbb{Z} is abelian, this action of $\operatorname{Aut} \pi_1(X, x_0)$ induces an action of $\operatorname{Out} \pi_1(X)$, the group of outer automorphisms of $\pi_1(X, x_0)$. In order to deal with possibly free involutions h of X, identify $\pi_1(X, h(x_0))$ to $\pi_1(X, x_0)$ using a path between base points. Because this identification is unique up to inner automorphism, one can safely speak of the outer automorphism class, denoted by $\hat{h}_{\#}$ of $h_{\#}$. Then $\hat{h}_{\#}$ as an element of $\operatorname{Out} \pi_1(X)$ acts on the set of fiberings of $\pi_1(X, x_0)$.

THEOREM 1. Let X be a closed P^2 -irreducible 3-manifold, $x_0 \in X$. The following are equivalent for a PL involution h of X.

- 1) h is fiberwise,
- 2) $\pi_1(X, x_0)$ admits a fibering $\varepsilon_0 : \pi_1(X, x_0) \rightarrow \mathbb{Z}$ invariant under \hat{h}^{\sharp} such that the covering space corresponding to Ker ε_0 admits an involution that covers h,
- 3) $\pi_1(X, x_0)$ admits a fibering $\varepsilon_0 : \pi_1(X, x_0) \to \mathbb{Z}$ invariant under \hat{h}_* such that Ker ε_0 contains an element of the form $[\gamma h \gamma]$ for some path γ from x_0 to $h(x_0)$.

COROLLARY. A PL involution h fixing a point x_0 of a closed P^2 -irreducible 3-manifold X is fiberwise if and only if the group $\pi_1(X, x_0)$ admits a fibering $\varepsilon_0 : \pi_1(X, x_0) \to \mathbb{Z}$ such that $\varepsilon_0 \circ h_{\#} = \varepsilon_0$.

THEOREM 2. Let h be a PL involution of a closed P^2 -irreducible 3-manifold, $x_0 \in X$. If $\pi_1(X, x_0)$ admits a fibering $\varepsilon_0 : \pi_1(X, x_0) \to \mathbb{Z}$ invariant under $\hat{h}_{\#}$, then X admits a fibering $g : X \to S^1$ such that

- 1) $\varepsilon_0 = g_\# : \pi_1(X, x_0) \to \mathbf{Z} = \pi_1(S^1),$
- 2) $g \circ h = g$ or $g \circ h = a \circ g$, where $a : S^1 \to S^1$ is the antipodal map.

2. Covering homeomorphisms \tilde{h}

Throughout, let X, x_0 and h be as in Theorem 1 and suppose that the fibering $\varepsilon_0 : \pi_1(X, x_0) \to \mathbf{Z}$ is invariant under $\hat{h}_{\#}$.

An effect of identifying $\pi_1(X, x_1)$, $x_1 \in X$, to $\pi_1(X, x_0)$ is that the groups are fibered simultaneously. This simultaneous fibering can be visualized as follows. Factor the epimorphism ε_0 into the obvious composite

$$\pi_1(X, x_0) \to \pi_1(X, x_0) / \text{Ker } \varepsilon_0 \stackrel{\sim}{\to} \mathbf{Z}.$$

The group in the middle is canonically isomorphic to the group of covering transformations for the infinite cyclic regular covering $q: \widetilde{X} \to X$ such that Ker $\varepsilon_0 = q_{\sharp} \pi_1(\widetilde{X}, \widetilde{x}_0)$, $x_0 \in q^{-1}(x_0)$. Thus, fibering $\pi_1(X, x_0)$ by ε_0 amounts to choosing a generator T of covering transformations for $q: \widetilde{X} \to X$. This eliminates the role of x_0 and we have the fibering $\varepsilon_1: \pi_1(X, x_1) \to \mathbf{Z}$ for any $x_1 \in X$ given by the composite:

$$\pi_1(X, x_1) \to \pi_1(X, x_1)/q_{\#}\pi_1(\tilde{X}, \tilde{x}_1) = \pi_1(X, x_0)/q_{\#}\pi_1(\tilde{X}, \tilde{x}_0) \stackrel{\sim}{\to} \mathbf{Z}.$$

Here, $\tilde{x}_1 \in q^{-1}(x_1)$ and the equality in the middle means that we are regarding both sides as covering transformations. In case $x_1 = h(x_0)$, observe that $\varepsilon_0 : \pi_1(X, x_0) \to \mathbf{Z}$ is invariant under \hat{h}_* precisely when $\varepsilon_0 = \varepsilon_1 \circ h_*$.

In what follows, $q: \tilde{X} \to X$ and T are as in the above argument. The base point $\tilde{x}_0 \in q^{-1}(x_0)$ will be fixed once it is chosen. If γ is any path in X with origin x_0 , \tilde{T} will denote its lift in \tilde{X} with origin \tilde{x}_0 .

Now let \tilde{x}_1 be any point in $q^{-1}(h(x_0))$. Because $\varepsilon_0 = \varepsilon_1 \circ h_{\#}$, $h_{\#} \circ q_{\#} \pi_1(\tilde{X}, \tilde{x}_0) = q_{\#} \pi_1(\tilde{X}, \tilde{x}_1)$. Then, there is a unique $\tilde{h}: \tilde{X} \to \tilde{X}$ with $\tilde{h}(\tilde{x}_0) = \tilde{x}_1$ such that $q \circ \tilde{h} = h \circ q$. Any map $\tilde{h}: \tilde{X} \to \tilde{X}$ with $q \circ \tilde{h} = h \circ q$ is a homeomorphism and is referred to as a covering hemeomorphism (for h).

LEMMA 1. Each covering homeomorphism h commutes with T.

Proof. Let γ be a loop at x_0 such that $\tilde{\tau}(1) = T(\tilde{x}_0)$. Both $[\gamma]$ and h_{\sharp} $[\gamma] = [h\gamma]$ represent the same covering transformation T because ε_0 is invariant under \hat{h}_{\sharp} . Since $\tilde{h}\tilde{\tau}$ is the lift with origin $\tilde{h}(\tilde{x}_0)$ of $\tilde{h}\tilde{\tau}$, $\tilde{h}r(1) = T(\tilde{h}\tilde{\tau}(0))$. Hence $\tilde{h}T(\tilde{x}_0) = T\tilde{h}(\tilde{x}_0)$ and the lemma follows because of the unique lifting property.

LEMMA 2. Either \tilde{X} admits an involution covering h or $\tilde{h}\tilde{h}=T$ for some

covering homeorphism h.

Proof. If \tilde{h} is a covering homeomorphism, $\tilde{h}\tilde{h}$ being a covering transformation, it is expressible as $\tilde{h}\tilde{h}=T^i$. All covering homeomorphisms are of the form $\tilde{h}T^k$ and $(\tilde{h}T^k)^2=T^{i+2k}$ by Lemma 1. If $i\neq 0$, 1, replace \tilde{h} by $\tilde{h}T^k$ such that i+2k=0 or 1.

LEMMA 3. \tilde{X} admits an involution \tilde{h} covering h if and only if there is a path γ in X joining x_0 to $h(x_0)$ such that $\lceil \gamma h \gamma \rceil \in \text{Ker } \varepsilon_0$.

Proof. If \tilde{h} is a covering involution, choose any path $\tilde{\tau}$ joining \tilde{x}_0 to $\tilde{h}(\tilde{x}_0)$ in \tilde{X} and let $\gamma = q\tilde{\tau}$. Then $\tilde{\tau}\tilde{h}\tilde{\tau}$ is a loop and $\gamma h\gamma \in q_{\#}\pi_1(\tilde{X}, \tilde{x}_0) = \text{Ker } \varepsilon_0$. Conversely, if there is a path γ from x_0 to $h(x_0)$ such that $[\gamma h\gamma] \in \text{Ker } \varepsilon_0$, let \tilde{h} be the covering homeomorphism such that $\tilde{h}(\tilde{x}_0) = \tilde{\tau}(1)$. Because $q(\tilde{\tau}\tilde{h}\tilde{\tau}) = \gamma h\gamma$ represents an element of $\text{Ker } \varepsilon_0 = q_{\#}\pi_1(\tilde{X}, \tilde{x}_0)$, the path $\tilde{\tau}\tilde{h}\tilde{\tau}$ in fact is a loop at \tilde{x}_0 . Hence $\tilde{h}\tilde{h}(\tilde{x}_0) = \tilde{h}\tilde{\tau}(1) = \tilde{\tau}\tilde{h}\tilde{\tau}$ (1) $= \tilde{x}_0$. This shows that \tilde{h} is an involution as $\tilde{h}\tilde{h}$ must be a covering transformation.

Let F and \tilde{F} be the fixed point sets of h and \tilde{h} respectively.

LEMMA 4. If h is an involution, then $\tilde{F} = q^{-1}(F)$

Proof. The inclusion $\tilde{F} \subset q^{-1}(F)$ is obvious. Before proving the reverse inclusion, observe that the outer automomorphism class $\hat{h}_{\#}$ does not depend on the chosen base point x_0 and the effect of $\hat{h}_{\#}$ on the simultaneous fiberings $\varepsilon_1 : \pi_1(X, x_1) \to \mathbb{Z}$ for various $x_1 \in X$ is compatible with isomorphisms of fundamental groups induced by paths joining base points. This is clear because of the commutative square

$$\begin{array}{ccc}
\pi_1(X, x_0) & \xrightarrow{\sigma_r} & \pi_1(X, x_1) \\
\downarrow h_{\#} & & \downarrow h_{\#} \\
\pi_1(X, h(x_0)) & \xrightarrow{\sigma_{h_r}} & \pi_1(X, h(x_1))
\end{array}$$

where γ is any path joining x_0 to x_1 and σ_r , σ_{hr} are induced by γ , $h\gamma$. Thus the action of $\hat{h}_{\#}$ is a base point free notion and, under our hypothesis, $\hat{h}_{\#}$ leaves all ε_1 invariant.

Now let \tilde{x}_1 be any point with $x_1=q(\tilde{x}_1)$ in F Because $\varepsilon_1:\pi_1(X,x_1)\to \mathbb{Z}$ is invariant under \hat{h}_{\sharp} , there is a covering homeomorphism $\tilde{h}_1:\tilde{X}\to\tilde{X}$ such that $\tilde{h}_1(\tilde{x}_1)=\tilde{x}_1$. Hence $\tilde{h}_1=\tilde{h}T^k$. But \tilde{h}_1 is an involution because it fixes \tilde{x}_1 and we have $T^{2k}=(\tilde{h}T^k)^2=\tilde{h}_1^2=T^0$. Hence $\tilde{h}_1=\tilde{h}$ and $\tilde{h}(\tilde{x}_1)=\tilde{x}_1$. This completes the proof of Lemma 4.

3. Proof of Theorems 1 and 2

The implication $(1) \Rightarrow (3)$ in Theorem 1 is obvious, while $(3) \Rightarrow (2)$

follows from Lemma 3. For $(2) \Rightarrow (1)$, regard \tilde{X} as a product $M \times R^1$ where M is a closed surface with $\pi_1(M) \approx \text{Ker } \varepsilon_0$. As in [4,] the covering involution \tilde{h} is equivalent to $\alpha \times 1_{R^1}$ for suitable involution α of M. Actually, the proof of [4], Lemma 2.3] shows in the present case that \tilde{h} is equivalent with $\alpha \times \lambda$, where λ is an involution of R^1 . Because $\varepsilon_0 : \pi_1(X, x_0) \to \mathbb{Z}$ is invariant under \hat{h}_* , λ must be orientation preserving. Hence $\lambda = 1_{R^1}$. After this point, the proof is the same as in [4]. First fiber the orbit space of h using the fact that T also acts on the orbit space of h and then obtain the desired fibering of X making h fiberwise. The argument of [4] works word to word in the present situation.

We now pass to Theorem 2. The conclusion follows form Theorem 1 if there is a covering involution on \tilde{X} . Otherwise, let \tilde{h} be the covering homeomorphism of Lemma 2 such that $\tilde{h}\tilde{h}=T$. The orbit space Y of h is then identical with the orbit space of the free **Z**-action on \tilde{X} generated by \tilde{h} . Because $\tilde{h}\tilde{h}=T$ has no fixed point, \tilde{h} acts freely indeed. Deneote by $\bar{q}:\tilde{X}\to Y$ the orbit map of this **Z**-action given by \tilde{h} . We have the exact sequence

$$1 \to \bar{q}_{\sharp} \pi_1(\tilde{X}, \tilde{x}_0) \to \pi_1(Y, y_0) \xrightarrow{\bar{\varepsilon}} \mathbf{Z} \to 0$$

where **Z** is generated by \tilde{h} , $y_0 = \bar{q}(\tilde{x}_0)$. Then Ker $\bar{\varepsilon} \approx \pi_1(\tilde{X}, \tilde{x}_0) \approx$ Ker ε_0 is finitely generated; Ker $\bar{\varepsilon}$ is not isomorphic to \mathbf{Z}_2 or 0 either, because X is P^2 -irreducible. Hence, by Stallings [6] there is a fibering $\bar{g}: Y \to S^1$ such that $\bar{\varepsilon} = \bar{g}_\# : \pi_1(Y, y_0) \to \mathbf{Z} = \pi_1(S^1, s_0)$.

Let M_0 be a component of $(\bar{g}\bar{q})^{-1}(s_0)$, let W be the part of \tilde{X} bounded by M_0 and $\tilde{h}(M_0)$, and let $W' = W \cup \tilde{h}(W)$. Y can be obtained from W by identifying each $\tilde{x} \in M_0$ to $\tilde{h}(\tilde{x})$, and X is obtained from W' by identifying M_0 to $T(M_0)$ using $T = \tilde{h}\tilde{h}$. Regarding S^1 to be [0,1] with end points identified, we obtain the map $p: W \to [0,1]$ such that \bar{g} equals the composite of p with the obvious map $[0,1] \to S^1$. Let $p': W' \to [0,2]$ be defined by p' = p on W and $p'(\bar{x}) = 1 + p(\tilde{h}^{-1}(\tilde{x}))$ for $\tilde{x} \in \tilde{h}(W)$. Regarding S^1 as [0,2] with end points identified one sees that p' gives a fibering $g: X \to S^1$. This g satisfies conditions required in Theorem 2.

4. Examples

Theorem 1 can be used to recognize fiberwise involutions in certain practical situations. In the following, we give two examples along this line.

EXAMPLE 1. If M is an orientable closed surface of genus g>1, $M\times S^1$ admits a fiberwise involution h different from product involution even though the fixed point set of h consists of circles of the form $x\times S^1$. In fact, the example of $[4, \S 7]$ enjoys this property. The involution h is given by

 $h(x,s) = (\varphi(x)\psi(x)s)$ where φ is the involution with 2g+2 fixed points as in fig. 1, and $\psi: M \to S^1$ is a surjective map with values indicated in fig. 2 such that $\psi(x)$ and $\psi(\varphi(x))$ are complex conjugates each other. In the presentation

 $\pi = \langle a_1, b_1, ..., a_g, b_g, t; [a_i, t] = [b_i, t] = 1, II[a_i, b_i] = 1 \rangle$ of $\pi_1(M \times S^1, (v_0, s_0))$, generators can be so chosen that all a_i and b_i except

 a_1 can be represented by loops in the part of $M=M\times S_0$ with $\psi=1$, a_1 is represented by the arrowed circle in fig. 1, and that t is represented by $x_0\times S^1$ suitably oriented. Define $\varepsilon_0:\pi\to \mathbb{Z}$ by $\varepsilon_0(a_1)=1$, $\varepsilon_0(a_i)=0$ for i>1, $\varepsilon_0(b_i)=0$ for all i, and $\varepsilon_0(t)=2$. By [1, p.114], ε_0 is a well-defined fibering such that Ker ε_0 is isomorphic to the fundamental group of the orientable closed surface of genus 2(g-1)+1>g. Observe that $h_{\sharp}(a_i)$ and a_i^{-1} belong to the same homology class for i>1. Similarly for $h_{\sharp}(b_i)$ and b_i 1 for each i. Since $h_{\sharp}(a_1)=a_1^{-1}t$ and $h_{\sharp}(t)=t$, we have $\varepsilon_0\circ h_{\sharp}=\varepsilon_0$. The conclusion follows from Theorem 1.

EXAMPLE 2. Certain involutions can be fiberwise in infinitely many distinct ways. Let M be as in Example 1 and let h be any PL involution of $M \times S^1$ isotopic to $1_{M \times S^1}$. We show that $M \times S^1$ admits infinitely many inequivalent fiberings making h fiberwise. To this end, assume by [5] that $h=1_M \times a$, a being the antipodal map of S^1 . Then the injective surfaces F of genera k(g-1)+1 in [3], Corollary 4.7 can be assumed invariant under h for all even numbers $k \ge 2$. This situation can be better visualized by looking at figures in [2], Examples III. 14. Again by [3], these surfaces serve as fibers for suitable fiberings of $M \times S^1$. Since $h_\#$ belongs to the trivial outer

automorphism class, the assertion can be readily seen by looking at the fiberings of the fundamental group induced by such geometric fiberings with h-invariant fibers.

Acknowledgement: We thank K. W. Kwun for his advice and encouragement.

References

- 1. John Hempel, 3-manifolds, Ann. of Math. Studies 86, Princeton, 1976.
- 2. William Jaco, Lectures on 3-manifold topology, CBMS Lecture Notes (mimeographed), 1979.
- 3. _____, Surfaces embedded in $M^2 \times S^1$, Canadian J. Math. 22 (1970), 553-568.
- 4. H. Kim, J. Kim and K. W. Kwun, Algebraic determination of fiberwise PL involutions, Trans. Amer. Math. Soc., to appear.
- 5. K. W. Kwun and F. Raymond, Periodic maps on product 3-manifolds which are isotopic to the identity, J. Korean Math. Soc., 16 (1980), 113-116.
- 6. John Stallings, On fibering certain 3-manifods, Topology of 3-manifolds and related topics, Englewood Cliffs, N. J., 1961.

Concordia University and Michigan State University Seoul National University and Michigan State University