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ON THE STRUCTURE OF THE HALL-YAMADA SEMIGROUPS

By DonG KiE Kim

1. Introduction

An orthodox semigroup is defined as a regular semigroup in which the
idempotents form a subsemigroup. The class of orthodox semigroups thus
includes both the class of inverse semigroups and the class of bands.
Fantham [6], Yamada [15] and Petrich [12] have studied the case where
the semigroup is also a union of groups. i Specializing in another direction,
Yamada [16] have studied the case where the band of idempotents of the
semigroup is normal. Recentiy, the structure of orthodox semigroups in
general has been clarified by Yamada [[17] and Hall 8] independently.
More recently, Hall [9] has generalized the Munn semigroup further in the
case of a general regular semigroup.

Let S be an orthodox semigroup with band B of idempotents. The Hall
semigroup Wz of the band B plays an important role in the structure theory
to be discussed in this paper. Many of the idea involved are from Yamada’s
paper [19].

Our main theorem in this paper is Theorem 3.3. This theorem asserts
that the Hall-Yamada semigroup S=%#(B, T, ¢) is an orthodox semigroup
whose band of idempotents is isomorphic to B and that if y is the minimum
inverse semigroup congruence on S then S/y=T. Conversely, if § is an
orthodox semigroup whose band of idempotents is B then there is an
idempotent—separating homomorphism 6 : S/7—Wjp/r; whose range contains
all the idempotents of Wg/7r; and such that S=%(B, S/r,6), where 7; is
the minimum inverse semigroup congruence on the Hall semigroup W3 of B.

In section 2 we discuss basic properties of semigroups which are essential
to understand our main theorem.

The notation and the terminalogy in this paper are standard. They are
taken from [4]. Let p be a congruence on a semigroup S. Then S/p
denotes the factor semigroup of § modulo p, and pf : $— S/p denotes the
patural homomorphism of S onto S/p. Let X be a set. Then ¥(X) means
the semigroup of all transformations of X, and 9% (X) means the semigroup
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of all partial transformations of X. The group of all permutations of X is
denoted by @(X). By the (left-right) dual S* of a semigroup S we mean
the semigroup (S, o), the elements of which are the same as those of S,
and in which the binary operation o is defined by acb=ba for all o,b
in §S.

2. Preliminaries

In this section we shall state several propositions which are useful in the
next section. The proofs of propositions shall be omitted.

An element 2 of a semigroup S is called regular if a€aSa. A semigroup
S is called regular if every element of S is regular. Two elements a and &
of a semigroup S are said to be inverses of each other if aba=a and bab="5.
By an inverse semigroup we mean a semigroup in which every element has
a unique inverse. A band is a semigroup in which every element is
idempotent.

DEFITION 2.1. For each element 2 of a semigroup S, let
V(a)={<=S : b is an inverse of a}

It is easy prove the following proposition.

PROPOSITION 2.2 Let S be an orthodox semigrovp. Then the relation 1 on
S defined by
7=1{(z,9) €8X8: V(zx)=V(»)}
is a congruence on S.
Moreaver, it is the smallest inverse semigroup congruence on S,

DEFINITION 2.3. Let S be a semigroup. Define relations £ and ® on S by
2= {(a,5) €SXS : aUSa=bU Sb},
R={(a,b) €SXS : aUaS=bUbS}.
Then £ and R are a right and left congruence, respectively.

The relations £ and ® commute and so the relation D=LoR=R°4 is
the smallest equivalence relation containing both £ and ®. Moreover, the
relation £=L4NR is an equivalence relation.

We denote the /-class, the ®—class, the D-class and the #~class clontaining
an element a by L,, R,, D, and H,, respectively.

It is known that a congruence p on a regular semigroup S is idempotent-
separating if and only if pc%. In particular, the congruence &#¥#, the
largest congruence contained in &, is the maximum idempotent-separating

congruence on a regular semigroup S. Moreover, the following proposition
holds.
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PrOPOSITION 2.4. Let S be an inverse semigroup with semilattice E of
idempotents. Then the relation
t=1{(a,b) €8XS : a lea=b"leb for all ecE}
is the mazximum idempotent—separating congruence on S.

Let S be an orthodox semigroup with semilattice B of idempotents. And
let 7 be the congruence on S defined in Proposition 2. 2 and let
e=7rU (BXB).
Then & is a congruence on B, and there exists a monomorphism
7 : B/e — 8/r which commutes the following diagram.

S/r — Ble

THI Teﬂ
S inc B
Therefore, the semilattice of idempotents of the maximum inverse semigroup
homomorphic image of an orthodox semigroup S is isomorphic to the
maximum semilattice homomorphic image of the band B of idempotents of
S. Furthermore, the following holds.

PROPOSITION 2.5. Let S be an orthodox semigroup with band B of idem-
potents. 1f py==X* is the maximum idempotent—separating congruence on S,
then (a,b) Sy if and only if there exist o/ € V(a) and b €V(d) such that
for any zE€B

dzrza=bxb and azxd =bzb

By a representation of a semigroup S by partial transformations of a set
X we mean a homomorphism ¢ : S—9PT(X) of § into PG(X), where
PB(X) is the semigroup of all partial transformations of X. It is known
that a mapping ¢ : S—>9PG(S) which associates with each a of § an element
0, defined by

0.={(z,y) €ESXS : y=2za and (z,y) ER}
is a representation of a semigroup S by partial transformations. But this
representation is not in general faithful. In the case of a regular semigroup
we can overcome this disadvantage by simultaneously considering the (left-
right) dual of J,. Let 23*(S) denote the dual semigroup of 2G(S). We
have the following result.

PROPOSITION 2.6. Let S be a regular semigroup. For each a in S define
0,= {(z,y) €SXS : y==za and (z,y) €A},
7.={(z,5) €SXS : y=azx and (z,y) €4}.
Then the representation a : S—PT(S) XDPT*(S) defined by aa= (0, 7.) is
faithful.
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Let S be an orthodox semigroup with band B of idempotents. Then we

can define, for each ¢ in S, a mapping p, : B/4—B/2 by

Lo0,=Ly 20
where &’ is an arbitrarily chosen inverse of ¢. In particular, if e<B then
we have L,p,=L,,..

Note that if S is an inverse semigroup (so that B is a semilattice) then
L.,={2} and L,,,= {a"1za}. By dual arguments we can define, for cach a
in S, a mapping 1,: B/R—B/X by

R:A:=Rsze,
where @’ is an arbitrarily chosen inverse of a.
Now we have the following result.

PROPOSITION 2.7. Let S be an orthodox semigroup with band B of idempo-
tents. Let &: 8 — T(B/L)T*(B/R) be a mapping defined by
aé=(p,, ),
where p, and A, are given by
Leps=Lyzay RiAe=Rgzo- (.’L‘EB)
Then £ is a homomorphism whose kernel is the mazimum idempotentseparating
congruence {t on S.

Let B be a band and E a semilattice of B. For each ¢ in B define
Ee={z<=E:z<e}. Then it is easy to see that eBe=FEe. We denote ¢Be
by {¢>. Note that for all =,y in B

{y=L(y) © z=y.
We define

U= {(e, f)EBXB : () ={f}}
and write W,,; for the set of all isomorphims of {¢) onto {f). Note that
if g&{e) and a€W,,; then

{gra={ga) and ea=f.

If (e,f) €U and a€W,,;, we may define a,€¢(B/£) and a,€4(B/R)
by

Lyoy=L;., Rea,=Rg, (-T = <€>) .

Now let S be an orthodox semigroup with band B of idempotents. Let
a€S8 and o/ €V(a). Denoting aa’ by ¢ and oa’a by f, we observe that the
mapping p,€G(B/L) defined in Proposition 2.7 may be expressed as p.0;,
where 0 is an element of W,,; which is the mapping given by

z0=d’ za (ze4e)).

Similarly, the mapping A,€G(B/R) defined in Proposition 2.7 may be
expressed as A;0,”L. The range of the mapping & : S—T(B/£) XT*(B/R)
defined by a&=(p,, A,) is thus contained in the subset
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Wp= {(pcala zfar-l) tae Wesf, (e, f) Eﬂ}

of T(B/.L) XG*(B/R). We say that Wy is the Hall semigroup of the band
B. Now we have the following result.

PROPOSITION 2.8. Let B be a band and let
WB: {(pzzl’ 'zfa'r_l) : aEWe’fa (e:f) EW} .

Then

(1) Wp is a subsemigroup of T(B/.L) XT*(B/R).

(2) Wp is orthodox, with band of idempotents B*={(p,,) : e B}
isomorphic to B.

(3) If B* is identified with B, then, in Wp,

DU (BXB)=1.

3. Main Theorem

Let S be an orthodox semigroup with band B of idempotents. Then, by
Proposition 2.7, the mapping & : 2 — (g, 4,) of S onto Wj is not in general
one-one. Indeed its kernel is #. However, since we have

rNecrNd=Is,
the homomorphism % : §— W3zXS/7 defined by

an= ((pas Za) P aT) (1)
is one-one (see Proposition 2.2.),

If 7, is the minimum inverse semigroup congruence on Wjg, then &riff is
a homomorphism of § into the inverse semigroup Wpg/y; which must factor
through S/7 in accordance with the commutative diagram

Sy —— Wa/m1

r”[ ITIH 2

S = Ws

The homomorphism & is uniquely determined, and we have the following
lemma.

LEMMA 3.1. The homomorphism 0 is idempotent—separating. The range of
0 contains all the idempotents of Wg/y1.

Proof. Let ey and fr be idempotents in S/7 (where ¢, fEB) and suppose
that (ey)0=(fy)0. Then efy;=f&r;, that is, (e&, fE) €71 N (B*XB*), where
B* is the band of idempotents of Wp. It follows that the idempotents &, f&
in Wy are @-equivalent in B*. Since £|B is an isomorphism of B onto the
band B*, it follows that ¢ and f are @-equivalent in B. Hence we have

er=fr.
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Any idempotent in W3/7, is expressible as (p., 4.)7:, where (p,, 4.) is an
idempotent in Wp. Thus it is expressible as &7y for some idempotent e in
S. The commutativity of diagram (2) then enables us to express our idem-
potent as (ey)0. Hence every idempotent in Wp/7; lies in the range of 6.

Any element ((gs 2,),ay) in the range of 7 has the property that

(pav Ra) 71=4$T12470= (a?’) 0.

Conversely, we shall show that if (z,ay) € WX§/7 is an element such
that zy;= (ay) 0 then (z, ay) =57 for some b in S. In other words, we establish

PRrOPOSITION 3.2. Let S be an orthodox semigroup with band B of idem-
potents. The mapping 7 S— WpXS/7r defined by (1) is an isomorphism of
S onto

{(z, ar) EWpXS/7 : anili=(ar) 6},
the spined product of Wy and S/y with respect to Wp/7;, rifi and 0.

Proof. Tt remains to show that 7 is onto. Let (z,ayr) € WpXS/7 such
that zyy;={(ar)0. Then zy,={(ay)0="{(0, )71 so that V(z)=V{(p, 4,) in
Ws. Now for any inverse ¢ of a in S it is easy to verify that (o, A)€
V(04 A2) in Wp Hence (g, )=V (z) and so both (o, )z and z(g. A;)
are idempotents in W3. Therefore, there exist ¢, f in B such that

(pm 2:)-1': (pey Zc)y x(ﬂc, 2«:) = (Aof: Rf)-
As a consequence we have that
(pey ’12) R (pa 'Zc): (pc, /20) £ (ﬂf, 'Zf)
in Wg. That is, e£Rc€ and c&€ £fE in Wp. Examining the first of these,
we deduce that ¢ and ¢ are ®R-equivalent in S&. Thus there exist »,v in
S such that
e&=(c&) (u€), c&=(ef) (v8),
that is, such that
(e,cu) €606, (¢, ev) EEoE) L
Now &oé l=pcH< R and so there exist z and » in S such that
e=cuz, c=-evy.
We conclude that e®Re in S. Similarly, ¢£f in S.

Now it assures us that the H-class L, R, contains an inverse & of ¢. It
follows that in Wj the element (g5, 4;) is an inverse of (g, 4. and that it
is L-equivalent to (p,, 4.) and R-equivalent to (ps, 4;). Since z also has
these properties we conclude that z= (g3, 4;). Note that b7 and ar are both
inverses of ¢y in the inverse semigroup S/7. Hence #y=ay and so

(z, ar) = ((0s, %), b7) = b
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It is natural to make the following construction. Let B be a band and
let T be an inverse semigroup whose semilattice of idempotents is isomorphic
to B/e. Let 7; be the minimum inverse semigroup congruence on the Hall
semigroup Wz of B. Then Wg/7; is an inverse semigroup whose semilattice
of idempotents is isomorphic to B/e. Let & : T—>Wp/7; be an idempotent—
separating homomorphism whose range contains all the idempotents of
Ws/7:- Then we denote the spined product

S= {(z,8) EWpXT : ayi=:tT} 3
of Wg and T with respect to Wp/7ry, 71 and @ by #(B,T,¥). This
semigroup K (B, T, ¥) is called the Hall-Yamada semigroup determined by

the band B, the inverse semigroup T and the idempotent-separating homo-
morphism 7.

THEOREM 3.3. Let B, T,7, and ¥ be as above. Then the Hall-Yamada
semigroup S=H (B, T, ¥) is an orthodox semigroup whose band of idempotents
is isomorphic to B. If v is the minimum inverse semigroup congruence on S,
then S/y=T.

Conversely, if S is an orthodox semigroup whose band of idempotents is B,
then there exists an idempotent—separating homomorphism 0 1 S/7 — Wy/71 whose
range contains all the idempotents of Wg/r1 and such that S=H(B,S/7,0).

Proof. Note that the second half of this theorem is a restatement of
Lemma 3.1 and Proposition 3.2,

To prove the first half we shall show that S=%#(B, T, ¥) is regular. It
is obvious that WjyXT is regular; indeed we can say that the set of
inverses of an element (z,2) in WX T is V(z) X {#1}. If the element
(z,¢) is in S, that is, if ¢@=¢1, then for every 2z’ in V(z) the elements
27 and £ are both inverses of the element zy1=:¥ of the inverse
semigroup Wp/71; hence z'7y=¢t". and so («/,¢1)<S. Thus S is a
regular subsemigroup of WzX T, and we have shown moreover that the set
of inverses of an element (x,2) of S is V(z) X §1}.

That S is orthodox follows immediately from the fact that Wz and T
are orthodox and from the fact that an element (z,¢) of WX T is idem-
potent if and only if z is an idempotent of Wj and ¢ is an idempotent
of T.

Let B be the band of idempotents of S. We know that the idempotents
of Wi form a band B* isomorphic to B; indeed the mapping £|B:e—
(p., &) is an isomorphism of B onto B*. Denoting the inverse of £|B by
£ : B*>B, we define a mapping { : B—B by

(z,8){=zx ((z,8) €B).
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It is clear that { is a homomorphism. To see that it is onto, note that for
any ¢ in B the element (p,, A.)71% is an idempotent in Wg/7;, and so there
is a unique idempotent g in T such that g@=(p,, A.)7:9. Then ((p.,2.)g) €B
and has image ¢ under .

To show that { is one-one, suppose that the elements (z,2), (y,#) in B
are such that (z,£){=(y,u){. Then zt=yx and so z=py since & is an
isomorphism. Hence zyi=y78 and so t¥=u«¥ by the definition formula
(3) of S. But ¢ and « are idempotents of T and so, since ¥ is idempotent-
separating, ¢=u. Thus (z,t)=(y,u), and we conclude that { is an isomo-
rphism of B onto B.

It is easy to see that =z : (z,£) —¢ is a homomorphism of § into the
inverse semigroup 7. In fact, = maps onto T, since 7, maps Wjp onto
Wpg/y, and so for every ¢ in 7T there is an element x in Wj such that
x79=t¥, that is, such that (z,2)€S. If 7 is the minimum inverse semi-
group congruence on S, it follows that yCzox~! and that there is a homo-
morphism @« of S/y onto T such that

:n:‘I' — jo . (4)
S - Wa/11 L Wy

commutes.

We know that the set of inverses of (z,¢) in S is V(z) X {£1},
where V(z) is the set of inverses of the element z in Wjp Hence, using
the characterization of 7 by Proposition 2.2, we have that

r=1(z,), (;hw)) ESXS : V(@) X £} =V X e}
=1{((z,2), (y,w)) €§XS : t=u and V(z)=V(»)}.

On the other hand, #=« implies z¥=«¥, which in turn implies zy;=y71
since(z, ¢), (3, %) €S. Thus, using the characterization of 7; by Proposition
2.2, we have that if t=« then it follows that V(z) =V(y). Therefore,

r=1{((z, 1), (y,u)) ESXS : t=u}
=gopg 1
and so the mapping a : 8/7—7T in the diagram (4) is an isomorphism.
This completes the proof of Theorem.
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