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ON THE STRUCTURE OF THE HALL-YAMADA SEMIGROUPS

By DoNG KIE KIM

1. Introduction

An orthodox semigroup is defined as a regular semigroup in which the
idempotents form a subsemigroup. The class of orthodox semigroups thus
includes both the class of inverse semigroups and the class of bands.
Fantham [6J. Yamada [15J and Petrich [12J have studied the case where
the semigroup is also a union of groups. i· Specializing in another direction,
Yamada [l6J have studied the case where the band of idempotents of the
semigroup is normal Recentiy, the structure of orthodox semigroups in
general has been clarified by Yamada [17J and Hall [8J independently.
More recently, Hall [9J has generalized the Munn semigroup further in the
case of a general regular semigroup.

Let 8 be an orthodox semigroup with band B of idempotents. The Hall
semigroup WB of the band B plays an important role in the structure theory
to be discussed in this paper. Many of the idea involved are from Yamada's
paper [19].

Our main theorem in this paper is Theorem 3.3. This theorem asserts
that the Hall-Yamada semigroup 8=fJe(B, T, ifJ) is an orthodox semigroup
whose band of idempotents is isomorphic to B and that if r is the minimum
inverse semigroup congruence on 8 then 8Ir=.T. Conversely, if 8 is an
orthodox semigroup whose band of idempotents is B then there is an
idempotent-separating homomorphism 0 : 81r~WBlrl whose range contains
all the idempotents of WBlrl and such that 8='fJe(B, 81r, 0), where rl is
the minimum inverse semigroup congruence on the Hall semigroup W B of B.

In section 2 we discuss basic properties of semigroups which are essential
to understand our main theorem.

The notation and the terminalogy in this paper are standard. They are
taken from [4J. Let p be a congruence on a semigroup 8. Then 81p
denotes the factor semigroup of 8 modulo p, and p~ : 8 ~ 8 Jp denotes the
natural homomorphism of 8 onto Sip. Let X be a set. Then ~(X) means
the semigroup of all transformations of X, and ~ (X) means the semigroup
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of all partial transformations of X. The group of all permutations of X is
denoted by (J(X). By the (left-right) dual S* of a semigroup S we mean
the sernigroup (S, 0), the elements of which are the same as those of S,
and in which the binary operation ° is defined by aob=ba for all a, b
in S.

2. Preliminaries

In this section we shall state several propositions which are useful in the
next section. The proofs of propositions shall he omitted.

An element a of a semigroup S is called regular if aEaSa. A semigroup
S is called regular if every element of S is regular. Two elements a and b
of a semigroup S are said to be inverses of each other if aba=a and bab=b.
By an inverse semigroup we mean a semigroup in which every element has
a unique inverse. A band is a semigroup in which every element is
idempotent.

DEFITION 2.1. For each element a of a semigroup S, let
V(a) = {bES : b is an inverse of a}

It is easy prove the following proposition.

PROPOSITION 2. 2 Let S be an orthodox semigrovp. Then the relation r on
S defined by

r= {(x, y) ESXS: Vex) = V(y)}
is a congruence on S.

Moreover, it is the smallest inverse semigroup congruence on S,

DEFINITION 2. 3. Let S be a semigroup. Define relations 11. and (f( on S by
11.= {(a, b) ESXS : a USa=b USb},
eR= {(a, b) ESXS : a Uas=b UbS}.

Then 11. and eR are a right and left congruence, respectively.
The relations 11. and eR commute and so the relation QJ=11.o(f(=(J(°11. is

the smallest equivalence relation containing both 11. and eR. Moreover, the
relation /7(,=11. n(J( is an equivalence relation.

We denote the 11.-c1ass, the eR-class, the QJ-class and the a-class clontaining
an element a by La, Ra' Da and Ha. respectively.

It is known that a congruence p on a regular semigroup S is idempotent­
separating if and only if p~a. In particular, the congruence a f , the
largest congruence contained in a, is the maximum idempotent-separating
congruence on a regular semigroup S. Moreover, the following proposition
holds.
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PROPOSITION 2.4. Let S be an inverse semigroup with semilattice E of
idempotents. Then the relation

J.t= {(a, b) ESXS: a-1ea=b-1eb for all eEE}
is the maximum idempotent-separating congruence on S.

Let S be an orthodox semigroup with semilattice B of idempotents. And
let T be the congruence on S defined in Proposition 2. 2 and let

e=TU (BXB).
Then e is a congruence on B, and there exists a monomorphism
1J : B/e - S/r which commutes the following diagram.

S/r ~ B/e

TQI leQ
S ~ B

Therefore, the semilattice of idempotents of the maximum inverse semigroup
homomorphic image of an orthodox semigroup S is isomorphic to the
maximum semilattice homomorphic image of the band B of idempotents of
S. Furthermore, the following holds.

PROPOSITION 2.5. Let S be an orthodox semigroup with band B of idem­
potents. If fl=/J(,1ti is the maximum idempotent-separating congruence on S,
then (a, b) Efl if and only if there exist a' E V(a) and 1/ E V(b) such that
for any xEB

a'xa=b'xb and axa' =bxb'

By a representation of a semigroup S by partial transformations of a set
X we mean a homomorphism <p: S-gJ73(X) of S into gJ73(X), where
gJ73 (X) is the semigroup of all partial transformations of X. It is known
that a mapping <p : S-qJ73(S) which associates with each a of S an element
oa defined by

oa= {(x, y) ESXS : y=xa and (x, y) EGt}
is a representation of a semigroup S by partial transformations. But this
representation is not in general faithful. In the case of a regular semigroup
we can overcome this disadvantage by simultaneously considering the (left­
right) dual of oa' Let gJ73* (S) denote the dual semigroup of 9)73 (S). We
have the following result.

PROPOSITION 2.6. Let S be a regular semigroup. For each a in S define
oa= {(x, y) ESXS : y=xa and (x, y) E02},
Ta= {(x, y) ESXS : y=ax and (x, y) EJ!}.

Then the representation a: S-gJ73(S) XgJ73*(S) defined by aa= (Oa, Ta) is
faithful.
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Let S be an orthodox semigroup with band B of idempotents. Then we
can define, for each a in S, a mapping Pa : Bj.I1~Bj.l1 by

L:rPa= La':ra,
where a' is an arbitrarily chosen inverse of a. In particular, if eEB then
we have L:rPe = Le:re.

Note that if S is an inverse semigroup (so that B is a semilattice) then
L x= {x} and La'xa= {a-Ixa}. By dual arguments we can define, for each a
in S, a mapping Aa: BjOC~Bj(J( by

R:rAa= R axa"
where a' is an arbitrarily chosen inverse of a.

Now we have the following result.

PROPOSITION 2.7. Let S be an orthodox semigroup with band B of idempo­
tents. Let ~ : S ~ ?6 (B j .11) 76* (B j (J() be a mapping defined by

a~= (Pa' Aa),
where Pa and Aa are given by

LxPa=La':ra' RxAa=Ra:ra' (xEB).
Then ~ is a homomorphism whose kernel is the maximum idempotentseparating
congruence It on S.

Let B be a band and E a semilattice of B. For each e in B define
Ee= {xEE : x~e}. Then it is easy to see that eBe=Ee. We denote eBe
by <e). Note that for all x, y in B

<x)=<y) ~ x=y.
We define

1J,= {(e,!) EBXB : <e)~(f)}
and write W e,/ for the set of all isomorphims of <e) onto <f). Note that
if gE <e) and aE We,/ then

<g)a = <ga) and ea~f.

If (e,j) E1J, and aE We,/, we may define a,E(J(Bj.l1) and arE(J(BjOC)
by

L;raz=L:ra' R:ra r= R xa (xE<e».

Now let S be an orthodox semigroup with band B of idempotents. Let
aES and a'E V(a). Denoting aa' by e and a'a by f, we observe that the
mapping PaE76(Bj.l1) defined in Proposition 2.7 may be expressed as PeOI,
where 0 is an element of We,/ which is the mapping given by

xO=a'xa (xE<e».

Similarly, the mapping AaEW(Bj(J() defined in Proposition 2.7 may be
expressed as A/Or-I. The range of the mapping ~ : S~?6(Bj.l1) X?6*(B/(J()
defined by a~= (Pa' Aa) is thus contained in the subset
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(2)

(1)

WB= {(Peal, Afar-I) : aE We'/> (e,/) E'll}

of 7fJ(BIJ2) X7fJ*(BIO<). We say that W B is the Hall semigroup of the band
B. Now we have the following result.

PROPOSITION 2. 8. Let B be a band and let
WB={(PeAI' Afar-I): aEWe'f' (e,f) EU}.

Then
(1) W B is a subsemigroup of 7fJ(BIJ2) X7fJ*(BIO<).
(2) W B is orthodox, with band of idempotents B*= {(p,Ae) : eEB}

isomorphic to B.
(3) If B* is identified with B, then, in WB,

Q) U (BXB) ='ll.

3. Main Theorem

Let 8 be an orthodox semigroup with band B of idempotents. Then, by
Proposition 2.7, the mapping ~ : a - (Pal Aa) of 8 onto WB is not in general
one-one. Indeed its kernel is f-l. However, since we have

rnf-l~rna=Is,

the homomorphism i} : 8- WBX81r defined by
ai}= «Pa' Aa), ar)

is one-one (see Proposition 2. 2. ),
If rI is the minimum inverse semigroup congruence on WB, then erlQ is

a homomorphism of 8 into the inverse semigroup WBlrl which must factor
through 81r in accordance with the commutative diagram

,
81r ~

rQf
8 ~e

The hom:lmorphism 0 is uniquely determined, and we have the following
lemma.

LEMMA. 3. 1. The homomorphism 0 is idempotent-separating. The range of
o contains all the idempotents of WBlrI.

Proof. Let er and fr be idempotents in 81r (where e,fEB) and suppose
that (er) 0= (fr)O. Then e~rl ferh that is, (~,fe) Erl n (B*XB*), where
B* is the band of idempotents of WB. It follows that the idempotents e~,f~

in WB are ~-equivalent in B*. Since ~IB is an isomorphism of B onto the
band B*, it follows that e and f are ~-equivalent in B. Hence we have

er fr·
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Any idempotent in W Blr1 is expressible as (Pe, Ae)rI, where (Pe, Ae) is an
idempotent in W B. Thus it is expressible as e~r1 for some idempotent e in
S. The commutativity of diagram (2) then enables us to express our idem­
potent as (er)O. Hence every idempotent in WB/r1 lies in the range of O.

Any element «Pa, Aa) , ar) in the range of 1j has the property that

(Pa, Aa) r1 =a~r1=arO= (ar) ().

Conversely, we shall show that if (x, ar) E WBXS/r is an element such
that X71= (ar) 0 then (x, ar) =b1j for some b in S. In other words, we establish

PROPOSITION 3.2. Let S be an orthodox semigroup with band B of idem­
potents. The mapping r; : S -+ WBXS/r defined by (l) is an isomorphism of
S onto

{(x, ar) E W BX Sir : Xr1~= (ar)O},

the spined product of W B and Sir with respect to WB/rh r1~ and O.

Proof. It remains to show that r; is onto. Let (x, ar) E WBXS/r such
that x71=(ar)O. Then xr1=(ar)()=(Pa,Aa)r1 so that V(x) = V(Pa, Aa) in
W B • Now for any inverse c of a in S it is easy to verify that (Pc, AJ E

V(Pa, Aa) in WB. Hence (Pc, Ae) E Vex) and so both (Pc, Ae)x and x(p" AJ
are idempotents in WB' Therefore, there exist e,J in B such that

(Pc, AJx= (Pe. Ae), X (Pc, Ae) = (Pf, Af)·
As a consequence we have that

(Pe. Ae) m (Pc, Ae), (Pc, J..J J2 (pf' Af)
in W B. That is, e~ m c~ and c~ J2f~ in WB. Examining the first of these,
we deduce that e~ and c~ are m-equivalent in S~. Thus there exist u, v in
S such that

that is, such that
(e, cu) E~o~-l, (c, ev) E~o,;)-l

Now ';o~-l=f.lc;;;.!lec;;;.m and so there exist x and y in S such that
e=cux, c=evy.

We conclude that e(}(c in S. Similarly, cJ2f in S.
Now it assures us that the !le-class Le nRe contains an inverse b of c. It

follows that in W B the element (Pb' Ab) is an inverse of (Pc, Ae) and that it
is J2-equivalent to (Pe. Ae) and (}(-equivalent to (Pf, Af)' Since x also has
these properties we conclude that x= (Pb' Ab). Note that br and ar are both
inverses of cr in the inverse semigroup Sir. Hence br=ar and so

(x, ar) = «Pb' Ab), br) =b7j.
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It is natural to make the following construction. Let B be a band and
let T be an inverse semigroup whose semilattice of idempotents is isomorphic
to Ble. Let rl be the minimum inverse semigroup congruence on the Hall
semigroup W B of B. Then WBlrl is an inverse semigroup whose semilattice
of idempotents is isomorphic to Ble. Let qr : T~W Blrl be an idempotent­
separating homomorphism whose range contains all the idempotents of
WBlrl. Then we denote the spined product

S= {(x, t) E WBX T : XrlQ=tqr} (3)

of W B and T with respect to W B lrl' rlQ and qr by !Je(B, T, W). This
semigroup a(B, T, qr) is called the Hall-Yamada semigroup determined by
the band B, the inverse semigroup T and the idempotent-separating homo­
morphism W.

THEOREM 3.3. Let B, T, rl and qr be as above. Then the Hall- Yamada
semigroup S=a(B, T, l]J) is an orthodox semigroup whose band of idempotents
is isomorphic to B. If r is the minimum inverse semigroup congruence on S,
then SIr=T.

Conversely, if S is an orthodox semigroup whose band of idempotents is B,
then there exists an idempotent-separating homomorphism 8 : Sir~ WBlrl whose
range contains all the idempotents of W Blrl and such that S=!Jt,(B, Sir, 8).

Proof. Note that the second half of this theorem is a restatement of
Lemma 3. 1 and Proposition 3. 2.

To prove the first half we shall show that S=!Jt,(B, T, l]J) is regular. It
is obvious that WBX T is regular; indeed we can say that the set of
inverses of an element (x, t) in WBX T is Vex) X {r1}. If the element
(x, t) is in S, that is, if tl]J=tlQ, then for every x' in Vex) the elements
X'rlQ and rll]J are both inverses of the element XrlQ=tqr of the inverse
semigroup WBlrl; hence X'rl=r 1l]J. and so (x', r 1) ES. Thus S is a
regular subsemigroup of WBX T, and we have shown moreover that the set
of inV'erses of an element (x, t) of S is Vex) X {t-1} •

That S is orthodox follows immediately from the fact that WB and T
are orthodox and from the fact that an element (x, t) of WBX T is idem­
potent if and only if x is an idempotent of WB and t is an idempotent
of T.

Let B be the band of idempotents of S. We know that the idempotents
of W B form a band B* isomorphic to B; indeed the mapping ';IB : e~
(Pe, Ae) is an isomorphism of B onto B*. Denoting the inverse of .; IB by

IC : B*~B, we define a mapping r;, : B~B by

(x, t)'=XIC ((x, t) EB).
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It is clear that I',;; is a homomorphism. To see that it is onto, note that for
any e in B the element (Pe, Ae)rlq is an idempotent in WBlrh and so there
is a unique idempotent g in T such that gUJ= (Pe> Ae) rlQ. Then «Pe. )le) g) E 13
and has image e under 1',;;.

To show that C is one-one, suppose that the elements (x, t), (y, u) in 13
are such that (x,t)'=(y,u)'. Then x"=y" and so x=y since" is an
isomorphism. Hence XrlQ=YrlQ and so tUJ=uUJ by the definition formula
(3) of S. But t and u are idempotents of T and so, since UJ is idempotent­
separating, t=u. Thus (x, t) = (y, u), and we conclude that' is an isomo­
rphism of 13 onto B.

It is easy to see that TC: (x, t) ~ t is a homomorphism of S into the
inverse semigroup T. In fact, 7l: maps onto T, since rlQ maps WB onto
WBlrl and so for every t in T there is an element x in WB such that
XrlQ=tUJ, that is, such that (x, t) ES. If r is the minimum inverse semi­
group congruence on S, it follows that rc;;;;,TCoTC- 1 and that there is a homo­
morphism a of S / r onto T such that

(4)

commutes.
We know that the set of inverses of (x, t) in S is Vex) X {r 1

} ,

where Vex) is the set of inverses of the element x in WB' Hence, using
the characterization of r by Proposition 2. 2, we have that

r= {«x, t), (y, u» ESXS : Vex) X {r 1} = V(y) X {u-1
}}

= {«x, t), (y, u» ESXS : t=u and Vex) = V(y)}.

On the other hand, t=u implies xUJ=uUJ, which in turn implies Xrl=Yrl
since (x, t), (y, u) ES. Thus, using the characterization of rl by Proposition
2.2, we have that if t=u then it follows that Vex) = V(y). Therefore,

r= {«x,t), (y,u»ESXS: t=u}
=TCoTC-1

and so the mapping a : S/r~T in the diagram (4) is an isomorphism.
This completes the proof of Theorem.
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