FORMULES DU TYPE DE SIMONS ET APPLICATIONS

PAUL VERHEYEN

0. Introduction

En examinant les sous-variétés minimales d'un espace de Riemann, Simons a dérivé une équation différentielle qui doit être satisfaite par la seconde forme fondamentale d'une sous-variété minimale afin d'être totalement géodésique [19]. Son travail était le début d'une étude extensive du Laplacien du carré de la norme de la seconde forme fondamentale: d'abord Chern, do Carmo et Kobayashi ont calculé ce Laplacien quand l'espace entourant est localement symétrique, et en particulier une sphère [11]. Certaines généralisations pour des sous-variétés d'une sphère sont données par Chen ([7]) et Braidi et Hsiung ([4]).

En même temps Yau, Nomizu et Smyth ont étudié les variétés à courbure moyenne constante ([15], [20], [31]). D'autre part les sous-variétés minimales des espaces complexes, des espaces de Sasaki et des espaces quaternionales ont étés examiné à l'aide des formules du type de celle de Simons, par exemple par Chen, Ogiue, Blair, Ludden, Okumura, Yano, Kon et Yau ([1], [2], [3], [8], [14], [16], [17], [26], [28], [29], [30], [31]).

Nous discuterons brèvement le travail de Simons et nous donnerons quelques résultats concernant les sous-variétés d'un espace complexe à courbure sectionelle holomorphe constante.

1. Sous-varietes minimales d'une sphere

Soit M^n une variété de dimension n immergée dans un espace de Riemann \tilde{M}^{n+p} de dimension n+p, et soit TM (respectivement $T^{\perp}M$) le fibré tangent (resp. normal).

Nous considérons la seconde forme fonfamentale σ ,

(1.1)
$$\sigma(X, Y) = \tilde{V}_X Y - V_X Y,$$

où $X, Y \in TM$, \tilde{V} est la connection de Lévi-Civita de \tilde{M} et V celle induite sur M. Posons A le tenseur adjoint de σ , c'est-à-dire

$$\langle A_{\xi}X, Y \rangle = \langle \sigma(X, Y), \xi \rangle$$

où $X, Y \in TM$, $\xi \in T^{\perp}M$ et \langle , \rangle est la métrique dans $T\tilde{M}$ (les métriques dans TM et les fibrès associés seront notées aussi par \langle , \rangle).

Soit $\{e_A | A=1, \dots, n+p\}$ un repère orthonormé de $T\tilde{M}$ de sorte que $\{e_i | i=1, \dots n\}$ (resp. $\{e_{\lambda} | \lambda=n+1, \dots, n+p\}$) est un repère de TM (resp. de $T^{\perp}M$). Par rapport à ce repère, A a des components

$$(1.3) h_{ij}^{\lambda} = \langle A_{\lambda} e_i, e_j \rangle$$

avec

$$(1.4) A_{\lambda} = Ae_{\lambda}.$$

Soit Γ' la connection de van der Waerden-Bortolotti définie dans $TM \oplus T^{\perp}M$ ([6]) et posons

$$(1.5) h_{ijk}^{\lambda} = \nabla_k' h_{ij}^{\lambda},$$

$$(1.6) h_{ijkl}^{\lambda} = \nabla_l' h_{ijk}^{\lambda} = \nabla_l' \nabla_k' h_{ij}^{\lambda}.$$

Alors le Laplacien $\Delta'A$ de A est défini comme le tenseur à components $\Delta'h_{ij}^{\lambda}$ où

On a

(1.8)
$$\frac{1}{2}\Delta(\operatorname{tr} A^2) = \langle \Delta'A, A \rangle + \langle V'A, V'A \rangle$$

c'est-à-dire

(1.9)
$$\frac{1}{2}\Delta \|\sigma\|^2 = \sum_{i,j,k} h_{ij}^{\lambda} h_{ijkk}^{\lambda} + \|\mathcal{F}'\sigma\|^2.$$

Le Laplacien Δ' est un opérateur négatif sémi-défini auto-adjoint [19]. Associés à l'opérateur $A \in \text{Hom}(T^{\perp}M, SM)$ où SM est l'ensemble des opérateurs symétriques de TM. Simons a défini d'autres opérateurs

$$\tilde{A} = {}^{t}A \circ A \in \operatorname{End}(T^{\perp}M),$$

et

$$(1.11) \qquad A = \sum_{i} (ad A_{i})^{2} \in \operatorname{End}(SM),$$

et Kon [12] a considéré l'opérateur

$$(1.12) A^* = \sum_{\lambda} (A_{\lambda})^2 \in \operatorname{End}(TM).$$

Ces trois opérateurs sont symétriques et positifs sémi-définis. On a que

(1. 13)
$$\operatorname{tr} A^* = \operatorname{tr} \widetilde{A} = ||\sigma||^2 = S,$$

$$2 \operatorname{tr} A^{*2} = \langle A \circ A, A \rangle + 2 \sum_{\lambda,\mu} \operatorname{tr} (A_{\lambda} A_{\mu})^2,$$

$$\operatorname{tr} \widetilde{A}^2 = \sum_{\lambda,\mu} (\operatorname{tr} A_{\lambda} A_{\mu})^2,$$

et de plus on a les inégalités suivantes:

(1. 14)
$$\frac{1}{n}S^2 \leqslant \operatorname{tr} A^{*2} \leqslant S^2,$$
$$\frac{1}{n}S^2 \leqslant \operatorname{tr} \widetilde{A}^2 \leqslant S^2$$

Simons a prouvé que, pour une sous-variété minimale M^n de S^{n+p} , on a (1.15) $\Delta' A = nA - A \circ \tilde{A} - A \circ A,$

et pour toute sous-variété M^n immergée dans un espace \tilde{M}^{n+p} quelconque (1.16) $\langle A \circ \tilde{A} + A \circ A, A \rangle \leqslant qS^2$, où

$$(1.17) q = 2 - \frac{1}{p}.$$

Parce que Δ' est négatif sémi-défini, on a pour une sous-variété compacte M^n de S^{n+p} que

$$(1.18) 0 \leq -\int_{M} \langle A'A, A \rangle = \int_{M} n ||A||^{2} + \langle A \circ \tilde{A} + A \circ A, A \rangle$$
$$\leq \int_{M} -nS + qS^{2} = \int_{M} \langle S - \frac{n}{q} \rangle q.$$

Alors, si $S < \frac{n}{q}$ partout, on a l'égalité

$$(1. 19) 0 = \int_{M} qS\left(S - \frac{n}{q}\right),$$

de sorte que S=0.

THEOREME 1.1 [19]. Si M^n est une sous-variété minimale et compacte de $S^{n+p}(1)$ avec $S \leq \frac{n}{q}$, alors S=0 ou $S=\frac{n}{q}$ (c. -à-d. M est totalement géodésique)

Chern, do Carmo et Kobayashi ont calculé le Laplacien $\Delta ||\sigma||^2$ pour une sous-variété minimale d'un espace localement symétrique. En particulier, pour un espace de Riemann à courbure sectionelle constante et positive, cela donne la formule de Simons. De plus, ils ont étudié les sous-variétés mini-

males
$$M^n$$
 de $S^{n+p}(1)$ avec $S=\frac{n}{q}$.

THEOREME 1. 2 [11]. Les seules sous-variétés minimales et compactes de dimension n d'une sphère $S^{n+p}(1)$ avec $S=\frac{n}{q}$ sont la surface de Véronése dans S^4 et les hypersurfaces minimales de Clifford, c.-à-d.

$$M_{n,n-m}=S^m\left(\sqrt{\frac{m}{n}}\right)\times S^{n-m}\left(\sqrt{\frac{n-m}{n}}\right)\subset S^{n+1}(1)$$

pour n > m.

Remarquons que le théorème correspondant local est aussi vrai.

Grâce à l'étude des sous-variétés minimales de l'espace Euclidien \mathbf{E}^{n+p} , Simons a donné une réponse affirmative au problème de Bernstein pour $n \le 7$: est-il vrai que toute hypersurface minimale, non paramétrisée de \mathbf{E}^{n+1} de la forme

$$(1. 20) x^{n+1} = x^{n+1}(x^1, \dots, x^n)$$

est nécessairement linéaire? Les réponses affirmatives pour $n \le 4$ étaient déja données par de Giorgi (n=3, 1965) et Almgren (n=4, 1966). Bombieri, de Giorgi et Giusti ont prouvés que la réponse est négative pour n > 7.

Dans la suite nous donnerons quelques résultats concernant les espaces complexes: d'abord pour les sous-variétés Kaehlériennes et ensuite pour sous-variétés totalement réelles.

2. Sous-varietes Kaehleriennes des espaces complexes

Soit M^{2n} une sous-variété Kaehlérienne d'un espace complexe $\tilde{M}^{2(n+p)}(\tilde{c})$ à courbure sectionelle holomorphe constante. Nous choississons un repère orthonormé de $T\tilde{M}$ comme suit:

$$(2. 1) e_1, \dots, e_n, e_{1*} = \widetilde{J}e_n, \dots, e_{n*} = \widetilde{J}e_n \in TM, \\ e_{\widetilde{1}}, \dots, e_{\widetilde{p}}, e_{\widetilde{1}*} = \widetilde{J}e_{\widetilde{1}}, \dots, e_{\widetilde{p}*} = \widetilde{J}e_{\widetilde{p}} \in T^{\perp}M,$$

où \tilde{J} est la structure complexe de \tilde{M} .

(2.2)
$$\widetilde{J} = \begin{pmatrix} 0 & -I_n & 0 \\ I_n & 0 & 0 \\ \hline 0 & 0 & -I_p \\ I_p & 0 \end{pmatrix}$$

Nous posons les conventions suivantes sur les indices:

(2. 3)
$$a, b, c \in \{1, 2, \dots, n\},\$$

$$i, j, k, l \in \{1, \dots, n, 1^*, \dots, n^*\},\$$

$$\alpha, \beta \in \{\widetilde{1}, \dots \widetilde{p}\},\$$

$$\lambda, \mu \in \{\widetilde{1}, \dots, \widetilde{p}, \widetilde{1}^*, \dots, \widetilde{p}^*\}.$$

On a

$$(2.4) A_{\alpha*} = \tilde{J} A_{\alpha} = -A_{\alpha} \tilde{J},$$

d'où il suit que M est minimale dans \widetilde{M} .

Les inégalités (1.14) peuvent être réduites à

(2.5)
$$\frac{1}{2n}S^2 \leqslant \operatorname{tr} A^{*2} \leqslant \frac{1}{2}S^2, \frac{1}{2p}S^2 \leqslant \operatorname{tr} \tilde{A}^2 \leqslant \frac{1}{2}S^2.$$

De plus, on a

(2. 6)
$$\sum_{\lambda,\mu} (A_{\lambda}A_{\mu})^2 = 0,$$

de sorte que

$$(2.7) K_N = 2 \text{ tr } A^{*2}$$

où K_N est la courbure normale définie par

(2.8)
$$K_N = -\sum_{\lambda,\mu} \operatorname{tr}(A_{\lambda}A_{\mu} - A_{\mu}A_{\lambda})^2.$$

Il suit que M est totalement géodesique si $[A_{\lambda}, A_{\mu}] = 0$ pour tout λ, μ . On a aussi la proposition suivante.

PROPOSITION 2.1 [12]. Soit n>1, alors M^{2n} est une variété d'Einstein si et seulement si $\operatorname{tr} A*^2 = \frac{1}{2n}S^2$.

Contraction de l'équation de Gauss

$$(2.9) R_{ijkl} = \sum_{\lambda} (h_{ik}^{\lambda} h_{jl}^{\lambda} - h_{il}^{\lambda} h_{jk}^{\lambda}) + \widetilde{R}_{ijkl},$$

où \tilde{R} (resp. R) est le tenseur de courbure de \tilde{M} (resp. M), donne que la courbure scalaire ρ satisfait l'équation

(2.10)
$$\rho = n(n+1)\tilde{c} - ||\sigma||^2.$$

La courbure sectionelle $K(X \land Y)$ de M déterminée par les vecteurs orthonormés $X, Y \in T_{\mathfrak{p}}M$ à $\mathfrak{p} \in M$ est définie par

(2.11)
$$K(X \wedge Y) = R(X, Y; Y, X),$$

et la courbure sectionelle holomorphe H(X) de M déterminée par le vecteur unitaire $X \in T_pM$ à $p \in M$ par

(2. 12)
$$H(X) = K(X \wedge JX) = \tilde{c} - 2||\sigma(X, X)||^2,$$

où J est la structure complexe induite par \tilde{J} dans TM.

En concernant les sous-variétés totalement géodésiques on a le résultat suivant bien connu.

PROPOSITION 2.2 [30]. $M^{2n} \subset \tilde{M}^{2(n+p)}(\tilde{c})$ est totalement géodésique si et seulement si M satisfait une des conditions suivantes:

- (1) $H=\tilde{c}$,
- (2) $\rho = n(n+1)\tilde{c}.$

Soit $P_n\mathbf{C}(c)$ l'espace projectif complexe de dimension complexe n a courbure sectionelle holomorphe constante c > 0. Il y a le résultat suivant de Calabi.

PROPOSITION 2.3 [5]. L'espace projectif complexe $P_nC(c)$ peut être plongé dans $P_mC(\tilde{c})$ $(c, \tilde{c}>0)$ si et seulement si il existe $v \in \mathbb{N}_0$ tel que

- (i) $\tilde{c} = \nu c$
- (ii) $m \geqslant {n+\nu \choose \nu} 1$.

Le théorème suivant est dû à O'Neill.

THEOREME 2.1 [18]. L'immersion $M^{2n}(c) \subset \tilde{M}^{2(n+p)}(\tilde{c})$ est totalement géodésique pour $p < \frac{n(n+1)}{2}$.

Cette codimension est la meilleure possible: pour $p = \frac{n(n+1)}{2}$ on a le plongement Kaehlérienne $P_n\mathbb{C}(c) \longrightarrow \frac{Pn(n+3)}{2}\mathbb{C}(2c)$ qui n'est pas totalement géodésique. D'autre part, Ogiue a prouvé que ce contre-exemple est aussi le meileur possible.

PROPOSITION 2.4 [16]. Si $M^{2n}(c)$ est une sous-variété de $\tilde{M}^{2(n+p)}(\tilde{c})$ avec $p=\frac{n(n+1)}{2}$, alors $c=\tilde{c}$ ou $c=\frac{\tilde{c}}{2}$. Le cas dernier peut seulement se présenter si $\tilde{c}>0$.

Le même résultat reste valable dans le cas où p est arbitraire et σ est parallel (c. à-d. $V'\sigma=0$). De plus, pour $M^{2n}(c) \subset P_{n+p}\mathbb{C}(\tilde{c})$, $\tilde{c}>0$, on a $c=\tilde{c}$ ou $c\leqslant \frac{\tilde{c}}{2}$.

Pour les sous-variétés Kaehlériennes et complètes M^{2n} de l'espace projectif complex $P_{n+p}\mathbf{C}(\tilde{c})$, $\tilde{c}>0$, on a les résultats suivants.

PROPOSITION 2.5 [16]. Si K>0, ρ est constant et $p<\frac{n(n+1)}{2}$, alors M est totalement géodésique.

PROPOSITION 2.6 [16]. Si $H > \frac{\tilde{c}}{2}$ et ρ est constant, M est totalement géodésique.

A partir de ces résultats on a les conjectures suivantes pour $M^{2n} \subset P_{n+p} \mathbb{C}(1)$ formulées par Ogiue ([16], [17]).

- (I) Si K>0 et $p<\frac{n(n+1)}{2}$, alors M est totalement géodésique.
- (II) Si $H > \frac{1}{2}$, alors M est totalement géodésique
- (III) M est totalement géodésique si $\rho > n^2$.

La conjecture (III) qui est équivalent à $||\sigma||^2 < n$ est vraie pour certaines variétés algèbriques:

THEOREME 2.7 [16]. Soit M^{2n} une sous-variété Kaehlérienne et compacte plongée daas $P_{n+p}\mathbb{C}$. Si M est une intersection complète et $\rho > n^2$, alors M est totalement géodésique.

De plus, en partant de la formule du type de Simons

(2. 13)
$$\frac{1}{2}\Delta ||\sigma||^2 = ||\nabla'\sigma||^2 - 2\operatorname{tr} A^{*2} - \operatorname{tr} \tilde{A}^2 + \frac{n+2}{2}\tilde{c}||\sigma||^2,$$

et en utilisant Proposition 2.1 on peut prouver

PROPOSITION 2.7 [16]. Si M^{2n} est une sous-variété compacte et Einsteinnienne de $P_{n+p}\mathbb{C}$, n>1, alors $\rho>n^2$ implique que M est totalement géodésique.

De même façon on trouve le résultat suivant.

PROPOSITION 2. 8. [16]. Si M^{2n} est une sous-variété compacte de $P_{n+p}\mathbb{C}$ et $\rho > n(n+1) - \frac{n+2}{3}$, alors M est totalement géodésique.

D'autre part on peut trouver des pincements sur K et H de façon suivante. La formule de Chern, do Carmo et Kobayashi implique qu'on a pour $M^{2n} \subset \tilde{M}^{2(n+p)}(\tilde{c})$ que

(2. 14)
$$\sum_{\lambda,i,j} h_{ij}^{\lambda} \Delta' h_{ij}^{\lambda} = \sum_{\lambda,i,j} h_{ij}^{\lambda} h_{km}^{\lambda} R_{mijk} + \sum_{\lambda,i,j} h_{ij}^{\lambda} h_{mi}^{\lambda} R_{mkjk} - \operatorname{tr} A^{*2} - \frac{1}{2} \tilde{c} ||\sigma||^{2}.$$
 Il est facile de prouver que

(2. 15)
$$\sum h_{ij}{}^{\lambda}h_{km}{}^{\lambda}R_{mijk} + \sum h_{ij}{}^{\lambda}h_{mi}{}^{\lambda}R_{mkjk} = \frac{n+3}{2}\tilde{c}||\sigma||^2 - \operatorname{tr} \tilde{A}^2 - \operatorname{tr} A^{*2},$$
 de sorte que

(2. 16)
$$\sum h_{ij}^{\lambda} \Delta' h_{ij}^{\lambda} = (1+a) \left[\sum h_{ij}^{\lambda} h_{km}^{\lambda} R_{mijk} + \sum h_{ij}^{\lambda} h_{mi}^{\lambda} R_{mkjk} \right]$$
$$+ a \operatorname{tr} \tilde{A}^{2} + (a-1) \operatorname{tr} A^{*2} - \frac{1}{2} \tilde{c} \left[(n+3) a + 1 \right] \|\sigma\|^{2}$$

pour tout $a \in \mathbb{R}$. Cette formule était utilisée pour la première fois par Yau ([31]). D'autre part

(2.17)
$$\sum h_{ij}{}^{\lambda}h_{km}{}^{\lambda}R_{mijk} + \sum h_{ij}{}^{\lambda}h_{mi}{}^{\lambda}R_{mkjk} \ge 2[(n-1)K + H]||\sigma||^2$$
, où K (resp. H) denote l'infimum de la courbure sectionelle (resp. de la courbure sectionelle holomorphe). Pour $1+a\ge 0$ on a

et pour $0 \le a \le 1$

Posons ensuite $a = \frac{p}{p+1}$, il résulte que

$$(2. 20) \quad \frac{1}{2} \Delta ||\sigma||^2 \geqslant \frac{1}{2(p+1)} \left\{ 4 \left[n-1 \right) K + H \right] (2p+1) - \left[p(n+4) + 1 \right] \tilde{c} \right\} ||\sigma||^2.$$

Si $(n-1)K+H>\frac{p(n+4)+1}{4(2p+1)}\tilde{c}$, alors $\frac{1}{2}\Delta||\sigma||^2\geqslant 0$ et le lemme de E. Hopf implique que $\Delta||\sigma||^2=0$ si M est compact, de sorte que $||\sigma||^2=0$ c. $-\dot{a}-\dot{d}$. M est totalement géodésique.

Theoreme 2.3 [23]. Si M^{2n} est une sous-variété Kaehlérienne compacte de $\tilde{M}^{2(n+p)}(\tilde{c})$ et

$$(n-1)K+H>\frac{p(n+4)+1}{4(2p+1)}\tilde{c},$$

alors M est totalement géodésiqu.

Parce que $H \geqslant K$, l'inégalité peut être remplacée par $K > \frac{p(n+4)+1}{4n(2p+1)}\tilde{c}$.

Conridérons maintenant les sous-variétés Kaehlériennes dont le tenseur de Bochner est zéro. Il y a le théorème suivant de Yamaguchi et Sato:

THEOREME 2.4 [27]. Si M^{2n} est une sous-variété Kaehlérienne totalement géodésique d'un espace Bochner-Kaehlérien \widetilde{M}^{2m} avec $n \ge 2$ et $m \ge 4$, alors M est Bochner plate.

En concernant l'immersion dans un espace projectif complexe, on a le résultat suivant.

PROPOSITION 2.9 [23]. Si M^{2n} est une sous-variété Bochner-Kaehlérienne de $\tilde{M}^{2(n+p)}(\tilde{c})$, alors $(n+1)(n+2)\operatorname{tr} \tilde{A}^2 + \|\sigma\|^4 = 4(n+1)\operatorname{tr} A^{*2}$.

On déduit que

(2. 21)
$$0 \leq \frac{1}{2p} [2p(2n+1) - (n+1)(n+2)] ||\sigma||^4.$$

Ceci prouve le théorème suivant de Kon en assumant que l'espace entourant est de plus Einsteinnien.

THEOREME 2.5 [13]. Si M^{2n} est une sous-variété Bochner-Kaehlérienne d'un espace Bochner-Kaehlérien $\tilde{M}^{2(n+p)}$ et $p < \frac{(n+1)(n+2)}{2(2n+1)}$, alors M est totalement géodésique.

Si on fait usage des Propositions 2. 1 et 2. 9 on retrouve le résultat d'O' Neill (Théorème 2. 1). De plus, si on remplace tr \tilde{A}^2 dans (2. 13) moyennant Proposition 2. 9, on trouve le résultat suivant.

THEOREME 2. 6. [23]. Si M^{2n} est une sous-variété Bochner-Kaehlérienne et compacte de $\widetilde{M}^{2(n+p)}(\widetilde{c})$ alors $\|\sigma\|^2 < \frac{(n+1)(n+2)^2}{2(n^2+5n+3)}\widetilde{c}$ implique que M est totalement géodésique.

Des pincements sur K et H sont obtenus comme ci-dessus; par exemple nous formulerons le résultat suivant.

THEOREME 2.7 [23].

$$(n-1) K+H > \frac{(n+1)(n^2+6n+12)+2p(n+4)}{8\lceil (n+1)(n+4)+2p\rceil} \tilde{c}$$

implique que la sous-variété Bochner-Kaehlérienne et compacte M^{2n} de $\tilde{M}^{2(n+p)}(\tilde{c})$ est totalement géodésique.

3. Sous-varietes totalement reelles de $\tilde{M}^{2(n+p)}(\tilde{c})$

Soit M^n une sous-variété totalement réelle de $\widetilde{M}^{2(n+p)}(\tilde{c})$, c'est-à-dire $\widetilde{J}(T_xM) \subset T_x^{\perp}M$ pour tout $x \in M$. Par rapport au repère orthonormé $\{e_A\}$ de sorte que

$$(3. 1) e_1, \cdots, e_n \in TM$$
 et $e_{\tilde{1}}, \cdots, e_{\tilde{p}}, e_{1*} = \tilde{J}e_1, \cdots, e_{n*} = \tilde{J}e_n, e_{\tilde{1}*} = \tilde{J}e_{\tilde{1}}, \cdots, e_{\tilde{p}*} = \tilde{J}e_{\tilde{p}} \in T^{\perp}M,$ \tilde{J} est de la forme

$$\mathfrak{J} = \begin{pmatrix} 0 & -I_{n+p} \\ I_{n+p} & 0 \end{pmatrix}$$

Les indices seront notées par

(3.3)
$$i, j, k, l, \dots \in \{1, \dots, n\}, \\ \lambda, \mu, \dots \in \{\tilde{1}, \dots, \tilde{p}, 1^*, \dots, n^*, \tilde{1}^*, \dots, \tilde{p}^*\}.$$

On a le résultat suivant de Chen et Ogiue:

PROPOSITION 3.1 [9]. $M^{2n} \subset \widetilde{M}^{2(n+p)}(\overline{c})$ est totalement géodésique si et seulement si M satisfait une des conditions suivantes

$$(1) K = \frac{\tilde{c}}{4},$$

(2)
$$\rho = \frac{1}{4}n(n-1)\tilde{c}.$$

La formule du type de Simons est

(3.4)
$$\frac{1}{2}\Delta \|\sigma\|^{2} = \|\nabla'\sigma\|^{2} + 2\sum \operatorname{tr}(A_{\lambda}A_{\mu})^{2} - 2\operatorname{tr}A^{*2} - \operatorname{tr}\tilde{A}^{2} + \frac{1}{4}n\tilde{c}\|\sigma\|^{2} + \frac{1}{4}\tilde{c}\sum_{i=1}^{n}\operatorname{tr}A_{i*}^{2}.$$

Pour p=0, cela se réduit à

(3.5)
$$\frac{1}{2}\Delta ||\sigma||^2 = ||\nabla'\sigma||^2 + 2\sum \operatorname{tr}(A_{i*}A_{j*})^2 - 3\operatorname{tr}A^{*2} + \frac{1}{4}(n+1)\tilde{c}||\sigma||^2,$$
 parce qu'on a

(3. 6)
$$\operatorname{tr} A^{*2} = \operatorname{tr} \tilde{A}^{2}$$
.

Chen et Ogiue ont aussi prouvé le résultat suivant.

THEOREME 3.1 [9]. Si M^n est une sous-variété totalement réelle, compacte et minimale de $\tilde{M}^{2n}(\tilde{c})$ et $\rho > \frac{n^2(n-2)}{2(2n-1)}\tilde{c}$, $c. -\dot{a}-d$. $||\sigma||^2 < \frac{n(n+1)}{4(2n-1)}\tilde{c}$, alors M est totalement géodésique.

Remarquons que l'on a

(3.7)
$$\rho = \frac{1}{4}n(n-1)\tilde{c} - ||\sigma||^2.$$

pour une sous-variété totalement réelle et minimale.

Pour un espace de Riemann à courbure constante, Chen et Ogiue ont trouvé le résultat suivant.

PROPOSITION 3.2 [9]. Si $M^n(c)$ est une sous-variété totalement réelle et minimale de $\tilde{M}^{2n}(\tilde{c})$, alors $c = \frac{\tilde{c}}{4}$ ou $c \leq 0$.

Le pincement suivant sur la courbure sectionelle est du à Chen et Houh.

PROPOSITION 3.3 [8]. Si M^n est une sous-variété totalement réelle et complète de $\dot{M}^{2n}(\tilde{c})$, alors $K \ge \frac{n-2}{4(2n-1)}\tilde{c}$ implique que M est totalement géodésique.

Concernant la codimension arbitraire on a le résultat de Ludden, Okumura et Yano.

PROPOSITION 3.4 [14]. Si M^n est une sous-variété totalement réelle, compacte et minimale de $M^{2(n+p)}(\tilde{c})$ et $||\sigma||^2 < \frac{n}{2-\frac{1}{n+2p}}$ \tilde{c} , alors M est totalement géodésique.

Le théorème correspondant local est trouvé en remplacant "M est compact" par "M a courbure scalaire constante".

Nous considérons maintenant les espaces M^n qui sont conforméments plattes et de dimension n>3, c. $-\dot{a}-d$. ceux pour lesquels le tenseur conforme de Weyl est égal à zero. On a le résultat suivant de Verstraelen.

Theoreme 3.2 [25]. Soit M^n une sous-variété totalement quasi-ombilicale et totalement réelle d'un espace Bochner-Kaehlérien $\tilde{M}^{2(n+p)}$ avec $n \ge 4$, alors M est conformément plat.

En concernant les pincements on a les résultats suivants.

THEOREME 3.3 [21]. Soit M^n une sous-variéte minimale, compacte, totalement réelle et conformément plate de $\widetilde{M}^{2n}(\tilde{c})$ avec $n \ge 4$, alors chaque des

conditions suivantes implique que M est totalement géodésique:

(1)
$$\rho > \frac{(n-1)^3(n+2)}{4(n^2+n-4)}\tilde{c}$$
,

(2)
$$\|\sigma\|^2 < \frac{(n+1)(n-1)(n-2)}{4(n^2+n-4)} \tilde{c},$$

(3) $K > \frac{(n-1)^2}{4n(n^2+n-4)} \tilde{c}.$

(3)
$$K > \frac{(n-1)^2}{4n(n^2+n-4)} \tilde{c}$$
.

La preuve se fait en utilisant

(3.8)
$$||\sigma||^4 = (n-1) \left[(n-2) \sum \operatorname{tr} (A_{i*} A_{j*})^2 - (n-4) \operatorname{tr} A^{*2} \right],$$

et

$$\frac{1}{n} \|\boldsymbol{\sigma}\|^4 \leqslant \operatorname{tr} A *^2 = \operatorname{tr} \tilde{A}^2 \leqslant \|\boldsymbol{\sigma}\|^4.$$

De plus, on a l'analogue du résultat de Chen et Verstraelen [10] concernant la relation entre la propriété d'être conformément plat et la quasiombilicité dans le cas où les tenseurs fondamentales secondes sont commutatives.

THEOREME 3.4 [24]. Soit Mⁿ une sous-variété totalement réelle d'un espace Bochner-Kaehlérienne $\tilde{M}^{2(n+p)}$ avec $n \ge 4$ et $\lceil A_{\lambda}, A_{\mu} \rceil = 0$ $(\lambda, \mu \in \{n+1, \dots, n+1\})$ 2p}), alors M est conformément plat si et seulement si

$$\sum_{i} (\rho_i^{\lambda} - \rho_j^{\lambda}) (\rho_k^{\lambda} \rho_l^{\lambda}) = 0$$

pour i, j, k, l deux à deux distinct et ou les ρ_i^{λ} sont les valeurs propres de A_{λ} . Parce qu'on a

$$(3. 10) h_{ij}^{k*} = h_{kj}^{i*} = h_{ik}^{j*},$$

les directions e_{1*}, \dots, e_{n*} sont cilindriques si $[A_{\lambda}, A_{\mu}] = 0$.

PROPOSITION 3.5 [24]. Soit Mⁿ une sous-variété totalement réelle et conformément plate d'un espace Bochner-Kaehlérien $\tilde{M}^{2(n+p)}$ avec $n\geqslant 4$ et $[A_{\lambda}, A_{\mu}] = 0$, alors

- 1) si 2p < n-2, M est totalement géodésique;
- 2) si $2p \ge n-2$, par respect à un repère orthonormé approprié $\{\xi_1=e_{1*},\cdots,\xi_n=e_{n*},\xi_{n+1},\cdots,\xi_{n+2p}\}$

on a

208

.....

$$\begin{split} &A\xi_{2n-2}\!=\!D(\rho^{2n-2},\,\cdots,\,\rho^{2n-2},\,\rho_{n-1}^{2n-2},\,\rho_{n-1}^{2n-2},\,\bar{\rho}^{2n-2})\,,\\ &A\xi_{2n-1}\!=\!D(\rho^{2n-1},\,\cdots,\,\rho^{2n-1},\,\rho^{2n-1})\,,\\ &A\xi_{2n}\!=\!D(\rho^{2n},\,\cdots,\,\rho^{2n},\,\rho^{2n})\,,\\ &A\xi_{2n+1}\!=\!A\xi_{2n+2}\!=\!\cdots\!=\!A\xi_{n+2p}\!=\!0, \end{split}$$

οù

$$D(a_1, a_2, \dots, a_n) = \begin{pmatrix} a_1 & 0 \\ a_2 & \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

REMARQUE. Les mêmes résultats restent valables pour les sous-variétés \mathbf{C} -totalement réelles et conformément plates d'un espace de Sasaki à courbure φ -sectionelle constante ($\lceil 22 \rceil$).

References

- 1. D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag (1976).
- D. E. Blair, Geometry of integral submanifolds of a contact distribution, Illinois J. Math. 19 (1975), 269-275.
- Positively curved integral submanifolds of a contact distribution, Illinois J. Math. 19 (1975), 628-631.
- S. Braidi & C. C. Hsiung, Submanifolds of Spheres, Math. Z. 115 (1970), 235– 251.
- E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. 58 (1953), 1-23.
- 6. B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
- 7. ———, Some results of Chern-do Carmo-Kobayashi Type and the length of the Second Fundamental Form, Indiana Univ. Math. J. 12 (1971), 1175-1185.
- 8. B. Y. Chen & C. S. Houh, Totally real submanifolds of a quaternion projective space, Ann. di Mat. pura ed appl. IV, Vol. CXX (1979), 185-199.
- B. Y. Chen & K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
- B. Y. Chen & L. Verstraelen, A characterization of totally quasi-umbilical submanifolds and its applications, Bull. U.M.I., 14-A (1977), 49-57 and 634.
- S.S. Chern, M. Do Carmo & S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, (Proc. Conf. for M. Stone, Univ. Chicago, 1968), Springer, New York (1970), 59-75.
- 12. M. Kon, On some complex submanifolds in Kaehler manifolds, Can. J. Math. 26

- (1974), 1442-1449.
- 13. ———, Kaehler immersions with vanishing Bochner curvatures tensors, Ködai Math. Sem. Rep. 27 (1976), 329-333.
- 14. G.D. Ludden, M. Okumura & K. Yano, Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei, 58 (1975), 346-353.
- 15. K. Nomizu & B. Smyth, A formula of Simon's type and hypersurfaces with constant mean curvature, J. Diff. Geom. 3 (1969), 376-377.
- 16. K. Ogiue, Differential Geometry of Kaehler submanifolds, Adv. in Math. 13 (1974), 73-114.
- 17. K. Ogiue, Positively curved complex submanifolds immersed in a complex projective space III, J. Diff. Geom. 11 (1976), 613-615.
- 18. B. O'Neill, Isotropic and Kaehler immersions, Can. J. Math. 17 (1965), 907-915.
- 19. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
- B. Smyth, Submanifolds of constant mean curvature, Math. Ann. 205 (1973), 265-280.
- 21. P. Verheyen & L. Verstraelen, Conformally flat totally real submanifolds of complex projective spaces (to appear in Soochow J. Math.).
- 22. P. Verheyen & L. Verstraelen, Conformally flat C-totally real submanifolds of Sasakian space-forms (to appear in Geometriae Dedicata).
- 23. P. Verheyen & L. Verstraelen, Positively curved complex submanifolds immersed in a complex projective space (to appear).
- 24. P. Verheyen & L. Verstraelen, Quasiumbilical anti-invariant submanifolds (to appear).
- 25. L. Verstraelen, A remark on conformally flat totally real submanifolds (to appear in Ködai Math. J.)
- S. Yamaguchi, M. Kon & T. Ikawa, C-totally real submanifolds, J. of Diff. Geom. 11 (1976), 59-64.
- S. Yamaguchi & S. Sato, On complex hypersurfaces with vanishing Bochner tensor in Kaehlerian manifolds, Tensor N. S. 22 (1971), 77-81.
- 29. ——, Anti-invariant submanifolds of Sasakian space forms I, Tōhoku Math. J. 29 (1977), 9-23; ——— II, J. of the Korean Math Soc. 13 (1976), 1-14.
- 30. Anti-invariant submanifolds, Marcel Dekker, New York 1978.

Katholieke Universiteit Leuven