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SOME TOPOLOGICAL PROPERTIES
OF THE LIPSCHITZ-KILLING CURVATURE

By JEAN-MARIE MORVAN

1. Introduction

In order to find relations between local properties of a submanifold and
its topology, an interesting method is an application of Morse theory. We
shall show, in this paper, that the sign of the Lipschitz-Killing curvature
of the submanifold in a fixed direction gives important restrictions on its
homology.

Let us consider the following situation: The circle SI in the plane E2.

a

q

It is clear that the Lipschitz-Killing curvature of SI at p and q with respect
to the direction a, is positive at p and negative at q. By a suitable defor­
mation of 8 1, it is possible to find some imbedding of 8 1 in E2 satisfying:

The curve is still the boundary of a compact set and there is at most one
point q such that the Lipschitz-Killing curvature at q is strictly negative.

We shall prove the following theorem which is a generalization of this
situation:

THEOREM. Let f : Mn - En+p be an isometric immersion of a compact Rie­
mannian manifold Mn of odd dimension n, into the Euclidean space En+p,

p~l.
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1) If there exists a fixed vector a in En+p, such that the Lipschitz-Killing
curvature of Mn is not null at every point where a is normal to Mn, and
positive at every point, except one, where a is normal to Mn, then Mn is an
homology sphere.

2) If n*-3k, VkEN, if 2p<n, and if there exists a fixed vector a in
En+ p, suck that the LiPschitz-Killing curvature of Mn is not null at every
point where a is normal to Mn, and positive at every point, except at most
two, where a is normal to Mn, then Mn is the boundary of a compact mani­
fold.

p

a

q

2. Notations and definitions

1) The second fundamental form of an isometric immersion.

Let f : Mn~En+p be an isometric immersion of a Riemannian manifold
Mn into the Euclidean space. We denote by (.) the scalar product on En+ p
and Mn, (7 the Levi-Civita connexion on Mn and V the trivial connexion
on En+p. TMn and T1..Mn are the tangent bundle and the normal bundle
over Mn. It is well known that the second fundamental form of the immer­
sion is the symmetric tensor 0' : TMnX TMn ~ T1..Mn defined by the equation

fxY={7xY+O'(X, Y), VX, YETMn.

We shall need the following:

DEFINITION. Let mE Mn, and ~ETm1..Mn. The Lipschitz-Killing curvature
of Mn. at m, in the direction~, is the determinant of the symmetric bili­
near form (0'(', '), O.

2) The height function on a submanifold.

We suppose now that Mn is compact. Let x be the position vector of Mn
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in .ElI+p• If a is a fixed vector of E"+P, we can consider the height funtion
ha=(x, a). It is well known that:

(i) A critical point m of ha is a point m such that (Xm, a)=O, VXmE
TmMlI.

(ii) At a critical point, the hessian of ha is given by
d2ha (X, Y) =(00 (X, Y), a).

(iii) For almost every a, ha has non-degenerate critical points. Then ha
is a Morse function, in the case where M" is compact.

Using the Morse inequalities (cf. [1J), we have, in this case : f3k~7:k,

where 13k is the k-th Betti number of M" (i. e., f3k=dirn Hk(M", F), where
H k(MlI, F) is the k-th homology group of M" over any field F) and 7:k is
the number of critical points of index k.

3) The Stiefel Whitney numbers of a manifold (cf. [2J).

Let Hk(M", Z/2Z) will denote the k-th cohomology group of M", with
coefficient in Z/2Z.

Let (Uk will denote the k-th Stiefel-Whitney class of M". And
w=l+WI+ ."+wlI is the total Stiefel-Whitney class of M". We denote by
w=l+WI+ "'+wlI the inverse of w.

A Stiefel-Whitney number N is defined by the following:
N=WlrlW2r2'''Wllrll, with 1rI+"'+nrll=n,

We recall now the well known theorem of Thorn (cf. [2J).

THEOREM (Thorn.) Let M" be a compact manifold. If all the Stiefel­
Whitney numbers of M" are null, then Mn is the boundary of a compact
manifold.

We shall use this theorem in the proof of our result.

3. Proof of the theorem

Since Mn is compact, there exists at least one point q on M" such that
the height function ha has a maximum value at q. At q, we have:

{
d haq=O
d2haq(X,X)~O, VXETqMlI.

On the other hand, the Lipschitz-Killing curvature at q is not null, by
assumption. Then.

det (00(', '),a)q=det d2haq<O.

We shall now examine the two different cases:

1) Suppose that every point m*q where a is normal to TmM satisfies
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det«(J(', '), a)m>O. Then, we have det d2ham>0 and ha is a Morse function.
We shall conclude that Mn is a homology sphere: The index of d2haq is n.
Since detd2ham>0, the index of d2ham is even. Then, with the notation

of (2.2), 'Z"k=O and consequently, f3k=O as soon as k is odd, k=f:-n.
If we replace a by -a, we can conclude, in the same way, that fJk=O

if k is even, k=f:-O.
Consequently, all the Betti numbers of Mn are null, except fJo and {In.

Thus Mn is a homology sphere.
2) Suppose that there exists two points q and q' such that

det«(J(', '), a)q=det d(2haq<0), and det «(J(', '), a)q,=det d2haq,<0.

If m is a critical point of ha' such that m=f:-q, m=f:-q', we have, by assum-
ption: det d 2ham =det«(J(', '), a)m > 0.

Then ha is a Morse function. Let s be the index of d2haq, . s is odd.
We need now the following lemmas.

LEMMA 1. Under the assumptions of 2), [3k=O if k =I=- 0, s, n-s, n.

Proof. If k is odd, k *' n, s, then 'Z"k=O. Consequently, fJk=O if k*,n, s.
Replacing a by -a, we conclude that {Jk=O if k is even, k *- 0, ~n-s.

Then, only {Jo, {Js, {In-s, fJn are eventually not null.

LEMMA 2. Under the assumptz"ons of 2), the Stz"efel- Whitney numbers of
Mn are null.

Proof. We have H k(Mn, Z/2Z) =0 if k =I=- 0, s, n-s, n. Then,
Hn-f«Mn, Z/2Z) =0 if k *' 0, s, n-s, n. That is,
Hk(M", Z/2Z) =0 if k =I=- 0, s, n-s, n.
Consequently, the k-th-Stiefel-Whithney classes of Mn IS null if k =1=-' 0,

s, n-s, n.
On the other hand, if Wk denotes the k-th-inversed Stiefel-Whitney class

of Mn, we have Wk=O as soon as k>p (cf. [2J).
Suppose that s<n-s. We have

Wn= {J)n-lWl+ {J)n-zW2+ .•.+wn-sws+ ···+{J)iiJn-s+ .•. +(J)"
= {J)n-sws+{J)swn- s+ {J)n'

Since n>2p, wn=O, and n-s>p. Then, wn-s=O, and

(1) {J)n-,ws+(U,,=O.

We shall prove now that {J)n-s=O, and {J),,=O. We have:

iiin-s=0={J),,-s-liii1+{J),,-s-ziii2+ ...+ {J)sm,,-2s+".+ {J)n-s

with {J)n-s-l=···={J)s+l···O, and iii"-2s=0 (for n-2s=l=-s). Consequently OO,,-s=O.
Using (1), we conclude that {J)n=O. Thus, only (Us is eventually not null.
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Consider now a Stiefel-Whitney number N,
N=W{lW2rz"'Wnrn, with lrl+···+nrn=n.

The only non null Stiefel-Withney number is eventually w/. In this case,
n is a multiple of s, say n=ls, where 1 is odd, 1*1, 1*3. Since

Ws2EH2s(Mn, Z/2Z) =0, wsl=O and N=O. Thus, all the Stiefel-Whitney
numbers of Mn are null.

The case where n-s<s can be treated with the same method. We can
now end the proof of the theorem applying the theorem of Thom (cf. par
2,3).
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