SOME TOPOLOGICAL PROPERTIES OF THE LIPSCHITZ-KILLING CURVATURE By Jean-Marie Morvan #### 1. Introduction In order to find relations between local properties of a submanifold and its topology, an interesting method is an application of Morse theory. We shall show, in this paper, that the sign of the Lipschitz-Killing curvature of the submanifold in a fixed direction gives important restrictions on its homology. Let us consider the following situation: The circle S^1 in the plane \mathbf{E}^2 . It is clear that the Lipschitz-Killing curvature of S^1 at p and q with respect to the direction a, is positive at p and negative at q. By a suitable deformation of S^1 , it is possible to find some imbedding of S^1 in \mathbb{E}^2 satisfying: The curve is still the boundary of a compact set and there is at most one point q such that the Lipschitz-Killing curvature at q is strictly negative. We shall prove the following theorem which is a generalization of this situation: THEOREM. Let $f: M^n \to \mathbf{E}^{n+p}$ be an isometric immersion of a compact Riemannian manifold M^n of odd dimension n, into the Euclidean space \mathbf{E}^{n+p} , $p \ge 1$. - 1) If there exists a fixed vector a in \mathbf{E}^{n+p} , such that the Lipschitz-Killing curvature of M^n is not null at every point where a is normal to M^n , and positive at every point, except one, where a is normal to M^n , then M^n is an homology sphere. - 2) If $n \neq 3k$, $\forall k \in \mathbb{N}$, if 2p < n, and if there exists a fixed vector a in \mathbb{E}^{n+p} , such that the Lipschitz-Killing curvature of M^n is not null at every point where a is normal to M^n , and positive at every point, except at most two, where a is normal to M^n , then M^n is the boundary of a compact manifold. ## 2. Notations and definitions 1) The second fundamental form of an isometric immersion. Let $f: M^n \to \mathbf{E}^{n+p}$ be an isometric immersion of a Riemannian manifold M^n into the Euclidean space. We denote by $\langle \cdot \rangle$ the scalar product on \mathbf{E}^{n+p} and M^n , V the Levi-Civita connexion on M^n and \widetilde{V} the trivial connexion on \mathbf{E}^{n+p} . TM^n and $T^{\perp}M^n$ are the tangent bundle and the normal bundle over M^n . It is well known that the second fundamental form of the immersion is the symmetric tensor $\sigma: TM^n \times TM^n \to T^{\perp}M^n$ defined by the equation $$\tilde{V}_X Y = V_X Y + \sigma(X, Y), \quad \forall X, Y \in TM^n.$$ We shall need the following: DEFINITION. Let $m \in M^n$, and $\xi \in T_m^{\perp}M^n$. The Lipschitz-Killing curvature of M^n . at m, in the direction ξ , is the determinant of the symmetric bilinear form $\langle \sigma(\cdot, \cdot), \xi \rangle$. 2) The height function on a submanifold. We suppose now that M^n is compact. Let x be the position vector of M^n in E^{n+p} . If a is a fixed vector of E^{n+p} , we can consider the height funtion $h_a = \langle x, a \rangle$. It is well known that: - (i) A critical point m of h_a is a point m such that $\langle X_m, a \rangle = 0$, $\forall X_m \in T_m M^n$. - (ii) At a critical point, the hessian of h_a is given by $d^2h_a(X, Y) = \langle \sigma(X, Y), a \rangle.$ - (iii) For almost every a, h_a has non-degenerate critical points. Then h_a is a Morse function, in the case where M^n is compact. Using the Morse inequalities (cf. [1]), we have, in this case: $\beta_k \leq \tau_k$, where β_k is the k-th Betti number of M^n (i. e., $\beta_k = \dim H_k(M^n, F)$, where $H_k(M^n, F)$ is the k-th homology group of M^n over any field F) and τ_k is the number of critical points of index k. 3) The Stiefel Whitney numbers of a manifold (cf. [2]). Let $H^k(M^n, \mathbb{Z}/2\mathbb{Z})$ will denote the k-th cohomology group of M^n , with coefficient in $\mathbb{Z}/2\mathbb{Z}$. Let ω_k will denote the k-th Stiefel-Whitney class of M^n . And $\omega=1+\omega_1+\cdots+\omega_n$ is the total Stiefel-Whitney class of M^n . We denote by $\overline{\omega}=1+\overline{\omega}_1+\cdots+\overline{\omega}_n$ the inverse of ω . A Stiefel-Whitney number N is defined by the following: $$N = \omega_1^{r_1} \omega_2^{r_2} \cdots \omega_n^{r_n}$$, with $1r_1 + \cdots + nr_n = n$, We recall now the well known theorem of Thom (cf. [2]). THEOREM (Thom.) Let M^n be a compact manifold. If all the Stiefel-Whitney numbers of M^n are null, then M^n is the boundary of a compact manifold. We shall use this theorem in the proof of our result. ## 3. Proof of the theorem Since M^n is compact, there exists at least one point q on M^n such that the height function h_a has a maximum value at q. At q, we have: $$\begin{cases} d \ h_{a_q} = 0 \\ d^2 h_{a_q}(X, X) \leqslant 0, \quad \forall X \in T_q M^n. \end{cases}$$ On the other hand, the Lipschitz-Killing curvature at q is not null, by assumption. Then. $$\det \langle \sigma(\cdot,\cdot), a \rangle_q = \det d^2h^a_q < 0.$$ We shall now examine the two different cases: 1) Suppose that every point $m \neq q$ where a is normal to $T_m M$ satisfies $\det \langle \sigma(\cdot, \cdot), a \rangle_m > 0$. Then, we have $\det d^2h_{a_m} > 0$ and h_a is a Morse function. We shall conclude that M^n is a homology sphere: The index of $d^2h_{a_q}$ is n. Since $\det^2h_{a_m}>0$, the index of $d^2h_{a_m}$ is even. Then, with the notation of (2, 2), $\tau_k=0$ and consequently, $\beta_k=0$ as soon as k is odd, $k\neq n$. If we replace a by -a, we can conclude, in the same way, that $\beta_k=0$ if k is even, $k\neq 0$. Consequently, all the Betti numbers of M^n are null, except β_0 and β_n . Thus M^n is a homology sphere. 2) Suppose that there exists two points q and q' such that $$\det\langle\sigma(\cdot,\cdot),a\rangle_q=\det d(^2h_{a_q}<0)$$, and $\det\langle\sigma(\cdot,\cdot),a\rangle_{q'}=\det d^2h_{aq'}<0$. If m is a critical point of h_a , such that $m \neq q$, $m \neq q'$, we have, by assumption: det $d^2h_{a_m} = \det \langle \sigma(\cdot, \cdot), a \rangle_m > 0$. Then h_a is a Morse function. Let s be the index of $d^2h_{aq'} \cdot s$ is odd. We need now the following lemmas. LEMMA 1. Under the assumptions of 2), $\beta_k=0$ if $k \neq 0$, s, n-s, n. **Proof.** If k is odd, $k \neq n$, s, then $\tau_k=0$. Consequently, $\beta_k=0$ if $k \neq n$, s. Replacing a by -a, we conclude that $\beta_k=0$ if k is even, $k \neq 0$, n-s. Then, only β_0 , β_s , β_{n-s} , β_n are eventually not null. LEMMA 2. Under the assumptions of 2), the Stiefel-Whitney numbers of M^n are null. Proof. We have $H_k(M^n, \mathbb{Z}/2\mathbb{Z}) = 0$ if $k \neq 0$, s, n-s, n. Then, $H^{n-k}(M^n, \mathbb{Z}/2\mathbb{Z}) = 0$ if $k \neq 0$, s, n-s, n. That is, $$H^{k}(M^{n}, \mathbb{Z}/2\mathbb{Z}) = 0$$ if $k \neq 0$, s, $n-s$, n. Consequently, the k-th-Stiefel-Whithney classes of M^n is null if $k \neq 0$, s, n-s, n. On the other hand, if $\overline{\omega}_k$ denotes the k-th-inversed Stiefel-Whitney class of M^n , we have $\overline{\omega}_k=0$ as soon as k>p (cf. [2]). Suppose that s < n-s. We have $$\overline{\omega}_n = \omega_{n-1}\overline{\omega}_1 + \omega_{n-2}\overline{\omega}_2 + \dots + \overline{\omega}_{n-s}\overline{\omega}_s + \dots + \omega_s\overline{\omega}_{n-s} + \dots + \omega_n$$ $$= \omega_{n-s}\overline{\omega}_s + \omega_s\overline{\omega}_{n-s} + \omega_n.$$ Since n>2p, $\overline{\omega}_n=0$, and n-s>p. Then, $\overline{\omega}_{n-s}=0$, and (1) $$\omega_{n-s}\bar{\omega}_s+\omega_n=0.$$ We shall prove now that $\omega_{n-s}=0$, and $\omega_n=0$. We have: $$\overline{\omega}_{n-s} = 0 = \omega_{n-s-1}\overline{\omega}_1 + \omega_{n-s-2}\overline{\omega}_2 + \dots + \omega_s\overline{\omega}_{n-2s} + \dots + \omega_{n-s}$$ with $\omega_{n-s-1} = \cdots = \omega_{s+1} \cdots 0$, and $\overline{\omega}_{n-2s} = 0$ (for $n-2s \neq s$). Consequently $\omega_{n-s} = 0$. Using (1), we conclude that $\omega_n = 0$. Thus, only ω_s is eventually not null. Consider now a Stiefel-Whitney number N, $$N = \omega_1^{r_1} \omega_2^{r_2} \cdots \omega_n^{r_n}$$, with $1r_1 + \cdots + nr_n = n$. The only non null Stiefel-Withney number is eventually ω_s^l . In this case, n is a multiple of s, say n=ls, where l is odd, $l\neq 1$, $l\neq 3$. Since $\omega_s^2 \in H^{2s}(M^n, \mathbb{Z}/2\mathbb{Z}) = 0$, $\omega_s^1 = 0$ and N = 0. Thus, all the Stiefel-Whitney numbers of M^n are null. The case where n-s < s can be treated with the same method. We can now end the proof of the theorem applying the theorem of Thom (cf. par 2, 3). ### References - 1. J. Milnor, Morse theory (1963), Annals of Mathematics Studies, Princeton University Press. - J. Milnor and J.D. Stasheff, Characteristic classes (1974), Annals of Mathematics Studies, Princeton University Press. Faculté des Sciences de Limoges