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A note on topological entropy of diffeomorphisms
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1. Introduction

The purpose of this note is to give some estimations for topological entropy of diffeo-
morphisms which preserve foliations.

Throughout this note, A denotes a closed m-dimensional C*-manifold, E an orientable
p-dimensionel C™-manifold of M and f a diffeomorphism of M which preserves E. Fix a
Riemann metric on M. Let d and 4, denote the induced distance functicns on M and on
a leaf L of E, respectively.

Hereafter B,(x) denotes {yeM; d(x,y)<r} and similarly D,(x) denotes {yeL; d.(x,»)
<r} where L is the leaf which contains x.

Also fix a family of distinguished charts {D/xXD;"*}..1,..., » Whose interiors cover M
and an associated partition of unity {A}.

We put P,=D?X {Z} and call this set a plague. If necessary, taking a refinement, we
may assume that for every plague P, and for every index j, the set P,ND/XD;"™* is
contained in some plague P,, for 2/eD;".

Definition. We say that a subset X of M (n, §)-spans M with respect to f if for any
xeM there exists an ¥’ X such that d(f*(x), fi(z"))<é for i=0, -, n—1. We put
ss(n,s) to be the minimum of the cardinalities of such subsets.

Then the topological entropy of f is defined by the following:

RO =sup lim sup —= 1log(S,(n, )
>0 " n
Next, we define the volume expanding ratio of f,
o(N =lim sup — log(sup_volume(f*(D,(¥)))

Let T, denote the typological linear space consisting of p-dimensional smooth forms on
M are T, the dual of T.

Define the closed convex cone C of 77, to be one that is generated by all Dirac currents
at positive p-vectors tangent to £ and call an element of C a foliation cycle, if it is
closed as a current.

Here positive means the compatibility to some fixed orientation of E. We also call a



closed current a foliation cycle if it is represented as a difference of foliation cycles.
2. Main theorem.

Lemma 1. For every foliation cycle a there exisis a family signed measure p, on D™
i=1, «, N such that

{am=Z S Dim_,(S P'r?.-v)dp;(zx
where y denotes an arbitrary p-form on M.
Making use of this lemma, we define the volume of a foliation cycle as follows.
Let a be a foliation cycle and g; be as in Lemma 1. By Haln's theorem, each g has
the unipue decomposition as p;=g,~py;. where g, and y,_ are non-negative measures
and each of them is singular with respect to the other. Let =g, +p..

Definition. Volume (a)=% S D™ S P lfv(dﬁ,-(z)

Here v denotes the volume form on each plague induced by the Riemann metric.
The following Lemma is immediate by the definition.
Lemma 2. For any foliation cycle a, we have

o(F)>lim sup -}7 log (wolume ((£)"a))

Let h(f) denote the topological entropy of [ and 6(f) the volume expanding ratio of f.
Theorem. 2(f)>d(S)

proof. Let P(x)=UP, and B,(x)=B,(x) N P(x).
x<p,

If one takes 4 sufficiently small, then, for every x€ 4/,
f(B.()NB, ()< B,(f(%).
If p(f)<0 there is nothing to prove.
Otherwise, it suffices to show that for every positive. p<p(f), h(f)=p. Fix a positive
p<p(f) and also fix r small enough that for every x&€M, D,,(2)cB,(x).
Then, if yeD,(x) we have that D,(x)cD, () <B,(»). For every positive integer #,
there exist an integer #>#. and xeM satisfying volume (f"(D,(x)))=¢" Let D=D,(x)

and s bhe sf(n+l, —g—)

Take a subset {xj, -, x) of M which (n+1, —g—)kspans M and put X;={yeD;

dF @D, FON < i=0, ).
We may assume that X, =¢, -, X,x¢ and X,,,='-=X,=¢. Take y,€X; for j=1, -, s’.
Then we have f*(X;) cB,(f*(y)) for k=0, -, n.
Henceforce, by the fact X;cDc B,(y,), we get that f*(X;)<B,(f"(y)).
Let X be an upper bound for the volumes of plagues.
Then, for every xeM, volume (B,(x)) <volume (B(0))<NK.

Therefore s,<n+1, ~—g—>23' pd NIK e,



Since we can take # arbitrarily large,

Iz(f)>_1i"m sup 7};—1— log(s,,(n-i-l, —-—))Zp

This completes the proof of theorem.
Finally we remark that theorem holds also for continuous maps from Af to itself which
prescerves E.
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