A note on topological entropy of diffeomorphisms

Seong, Hyun Kyung

Incheon Teachers College, Incheon, Korea

1. Introduction

The purpose of this note is to give some estimations for topological entropy of diffeomorphisms which preserve foliations.

Throughout this note, M denotes a closed m-dimensional C^{∞} -manifold, E an orientable p-dimensional C^{∞} -manifold of M and f a diffeomorphism of M which preserves E. Fix a Riemann metric on M. Let d and d_L denote the induced distance functions on M and on a leaf L of E, respectively.

Hereafter $B_r(x)$ denotes $\{y \in M; d(x,y) \le r\}$ and similarly $D_r(x)$ denotes $\{y \in L; d_L(x,y) \le r\}$ where L is the leaf which contains x.

Also fix a family of distinguished charts $\{D_i^{\rho} \times D_i^{m-\rho}\}_{i=1}, ..., N$ whose interiors cover M and an associated partition of unity $\{\lambda_i\}$.

We put $P_z = D_i^{\rho} \times \{Z\}$ and call this set a plague. If necessary, taking a refinement, we may assume that for every plague P_z and for every index j, the set $P_z \cap D_j^{\rho} \times D_j^{m-\rho}$ is contained in some plague P_z , for $z' \in D_j^{m-\rho}$.

Definition. We say that a subset X of M (n, δ) -spans M with respect to f if for any $x \in M$ there exists an $x' \in X$ such that $d(f^i(x), f^i(x')) < \delta$ for $i = 0, \dots, n-1$. We put $s_f(n, s)$ to be the minimum of the cardinalities of such subsets.

Then the *topological entropy of* f is defined by the following:

$$h(f) = \sup_{\delta \in \mathcal{S}} \lim \sup_{n \to \infty} \frac{1}{n} \log(S_f(n, \delta))$$

Next, we define the volume expanding ratio of f,

$$\rho(f) = \lim_{n \to \infty} \sup \frac{1}{n} \log(\sup_{x \in M} \operatorname{volume}(f^{n}(D_{r}(x))))$$

Let T_p denote the typological linear space consisting of p-dimensional smooth forms on M are T'_p the dual of T_p .

Define the closed convex cone C of T', to be one that is generated by all Dirac currents at positive p-vectors tangent to E and call an element of C a foliation cycle, if it is closed as a current.

Here positive means the compatibility to some fixed orientation of E. We also call a

closed current a foliation cycle if it is represented as a difference of foliation cycles.

2. Main theorem.

Lemma 1. For every foliation cycle α there exists a family signed measure μ_i on D_i^{m-p} $i=1,\dots,N$ such that

$$\langle \alpha, \eta \rangle = \sum_{i} \int_{D_{i}} \int_{D_{i}} \int_{D_{i}} \lambda_{i} \eta d\mu_{i}(z),$$

where n denotes an arbitrary p-form on M.

Making use of this lemma, we define the volume of a foliation cycle as follows.

Let α be a foliation cycle and μ_i be as in Lemma 1. By Haln's theorem, each μ_i has the unipue decomposition as $\mu_i = \mu_{i+} - \mu_{i-}$ where μ_{i+} and μ_{i-} are non-negative measures and each of them is singular with respect to the other. Let $\bar{\mu}_i = \mu_{i+} + \mu_{i-}$.

Definition. Volume
$$(\alpha) = \sum_{i} \int_{D_{i}^{m-p}} \left| \int_{P_{i}} \lambda_{i} v \right| d\bar{\mu}_{i}(z)$$

Here v denotes the volume form on each plague induced by the Riemann metric.

The following Lemma is immediate by the definition.

Lemma 2. For any foliation cycle α , we have

$$\rho(f) \ge \lim_{n} \sup \frac{1}{n} \log(volume((f_s)^n \alpha))$$

Let h(f) denote the topological entropy of f and $\delta(f)$ the volume expanding ratio of f.

Theorem. $h(f) \ge \delta(f)$

proof. Let
$$\hat{P}(x) = \bigcup_{x \in P_x} P_x$$
 and $\hat{B}_r(x) = B_r(x) \cap \hat{P}(x)$.

If one takes δ sufficiently small, then, for every $x \in M$,

$$f(\hat{B}_{\delta}(x)) \cap B_{\delta}(f(x)) \subset \hat{B}_{\delta}(f(x)).$$

If $\rho(f) \le 0$ there is nothing to prove.

Otherwise, it suffices to show that for every positive. $\rho < \rho(f)$, $h(f) \ge \rho$. Fix a positive $\rho < \rho(f)$ and also fix r small enough that for every $x \in M$, $D_{2r}(x) \subset \hat{B}_{\delta}(x)$.

Then, if $y \in D_r(x)$ we have that $D_r(x) \subset D_{2r}(y) \subset \hat{B}_s(y)$. For every positive integer n_0 there exist an integer $n \ge n$, and $x \in M$ satisfying volume $(f^n(D_r(x))) \ge e^{nr}$ Let $D = D_r(x)$ and s be $s_f(n+1, \frac{\delta}{2})$.

Take a subset $\{x_1, \dots, x_i\}$ of M which $(n+1, \frac{\delta}{2})$ spans M and put $X_i = \{y \in D;$

$$d(f^i(x_i), f^i(y)) < \frac{\delta}{2} \quad i=0, \dots, n$$

We may assume that $X_1 \neq \phi$, \cdots , $X_s \neq \phi$ and $X_{s+1} = \cdots = X_s = \phi$. Take $y_i \in X_i$ for $j = 1, \cdots, s'$. Then we have $f^k(X_i) \subset B_{\delta}(f^k(y_i))$ for $k = 0, \cdots, n$.

Henceforce, by the fact $X_i \subset D \subset \hat{B}_i(y_i)$, we get that $f''(X_i) \subset \hat{B}_i(f''(y_i))$.

Let K be an upper bound for the volumes of plagues.

Then, for every $x \in M$, volume $(\hat{P}_{i}(x)) \le \text{volume } (\hat{P}(x)) \le NK$.

Therefore $s_{\ell}(n+1, \frac{\delta}{2}) \ge s' \ge \frac{1}{NK}e^{nt}$.

Since we can take n arbitrarily large,

$$h(f) \ge \lim_{n} \sup_{n} \frac{1}{n+1} \log(s_{\rho}(n+1, \frac{\delta}{2})) \ge \rho$$

This completes the proof of theorem.

Finally we remark that theorem holds also for continuous maps from M to itself which preserves E.

References

- (1) Rafus Bowen: Entropy for group endomorphism and homogeneous spaces, *Trans. Amer. Math. Soc.*, 153(1971)
- [2] J.F: Plante: Foliation with measure preserving holonomy, Ann. Math., 102(1975)