On Lindelöf Degree and Compactness

Shin. Yong Soon

Ajou University, Suwon, Korea

The purpose of this note is to characterize the compactness of a topological space by the Lindeloef degree of the topological space.

If X is a topological space and χ_u is the least cardinal number such that every open cover of X has a subcover of cardinality less than or equal to χ_u , then χ_u is said to be the Lindeloef degree of the topological space X. Using this concept we prove the following theorems.

Theorem 1. A topological space is compact if and only if every net whose indexing set has cardinality less than or equal to the Lindeloef degree has a convergent subnet or equivalently a cluster point.

Proof. The proof of the necessity is well known. To prove the sufficiency let us assume that X is a topological space in which every net whose indexing set with cardinality less than or equal to the Lindeloef degree has a cluster point. Let $\mathcal F$ be an open covering of X. Then there is a subcover $\mathcal G$ with the cardinality less than or equal to the Lindeloef degree. For each finite subset $\mathcal W$ of $\mathcal G$, let $A_w = \cap \{X - W : W \in \mathcal W\}$ and let $\mathcal A = \{A_w : \mathcal W \text{ is a finite subset of } \mathcal G\}$. Then each element of $\mathcal A$ is closed and nonempty unless $\mathcal F$ has a finite subcober. Clearly the cardinality of $\mathcal A$ is less than or equal to the Lindeloef degree. $\mathcal A$ has the finite intersection property. $\mathcal A$ can be directed by setting A < B if and only if $A \supset B$. For each A in $\mathcal A$, we choose s_A in A so $\{s_A : A \in \mathcal A\}$ is a net. Let s be a cluster point of the net $\{s_A : A \in \mathcal A\}$.

If A < B, then $s_B \in A$ so that the net is eventually in every member of A. Since these members of A are closed, s belongs to each member of A and so A is not a cover of A. This contradiction shows that A has a finite subcover and completes the proof of the theorem.

Theorem 2. A topological space X is compact if and only if every infinite subset of X with cardinality less than or equal to the Lindeloef degree of X possesses a condensation point.

Proof. Clearly the Condition is necessary. Assume that X is a topological space such that every infinite subset of X with cardinality less than or equal to the Lindelocf degree of X possesses a condensation point. Let \mathcal{F} be an open covering of X and among all the

subcovers of \mathcal{F} choose a $\mathcal{C}V$ with the minimal cardinality. Let χ_{n} be the cardinality of $\mathcal{C}V$. Well order $\mathcal{C}V$ by $\omega_{X_{n}}$. The set $X-V_{0}$ is nonempty. Therefore there exists some $x_{\beta_{0}} \in X-V_{1}$ such that β_{0} is the least ordinal number such that $x_{\beta_{0}} \in V_{\beta_{0}}$. Since $\beta_{0} < \omega_{X_{n}}$ the set $\{V_{\alpha}: \alpha \leq \beta_{1}\}$ is not a cover for X. Therefore there exists an $x_{\beta_{1}} \in X-\bigcup_{\alpha \leq \beta_{0}} V_{\alpha}$, where β_{1} is the minimal ordinal such that $x_{\beta_{1}} \in V_{\beta_{1}}$.

Suppose that for every ordinal $\alpha < \gamma < \omega_{\alpha}$, we have an $x_{\beta_{\alpha}}$ such that if $\alpha' < \alpha < \gamma$ then $\beta_{\alpha'} < \beta_{\alpha}$ and $x_{\beta_{\alpha'}}$ is different from $x_{\beta_{\alpha}}$. Let δ be $\sup_{\alpha < \gamma} \beta_{\alpha}$. Since ω_{α} is regular we have $\delta < \omega_{\alpha}$. Now $X - \bigcup_{\alpha \leq \delta} V_{\alpha}$ is nonempty, therefore there exists an $x_{\beta_{\gamma}} \in X - \bigcup_{\alpha \leq \delta} V_{\alpha}$ where β_{γ} is the least ordinal such that $x_{\beta_{\alpha}} \in V_{\beta_{\gamma}}$.

Thus for every $\alpha < \omega_{x_{\bullet}}$ we have a β_{α} and an $x_{\beta_{\alpha}}$. Since the set of the $x_{\beta_{\alpha}}$ has cardinality χ_{\bullet} there exists some x in X which is a condensation point of this set. Since CV is a cover for X, there exists a $\beta < \omega_{x_{\bullet}}$ such that $x \in V_{\beta} \in CV$. Since V_{β} is a neighborhood of x, V_{β} contains χ_{β} members of the $x_{\beta_{\alpha}}$, but this is a contradiction for if $\beta_{\alpha} > \beta$ then $x_{\beta_{\alpha}}$ dose not belong to V_{β} . This completes the proof of the theorem.

It is easy to see the following

Corollary. If X is a topological space and χ_u is the least cardinal number such that every subset A of X with cardinality greater than or equal to χ_u possesses a condensation point, then the Lindeloef degree of X is less than or equal to χ_u .

References

- [1.] J. L. Kelley, General Topology, Van Nostrand, New York.
- [2.] W. Sierpinski, General Topology, Univ. Toronto Press,
- [3.] V. G. Boltyanskii, Topological Semifields and their Applications, General Topology and its Relations to Modern Analysis and Algebra, *Proc. Prague Symposium of Sept.* 1961, Academic Press, New York, 1962.