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A Note on the Semigroup with a Right Full set

By Sang Keun Lee

Gyeongsang University, [inju, Korea

Y.K. Chae investigated the properties of semigroups with the full set. In
this paper, we investigate some properties of semigroups with the right full

set.

Definition. A subset A of a semigroup S is said to be right full if and only if AS=A.
If a subset A of a semigroup S is said to be right and left full, then A is called full.

If S is a semigroup with the right identity, then every right ideal of S is right full.
But the converse is not true,

Theorem 1. The minimal right ideal of a semigroup S is right full.

Proof. Let R be the minimal right ideal of S. Then RS is contained in R. Since RS
is a right ideal, RS=R. Thus R is right full.

Theorem 2. The union of any collection of right full sets of a semigroup S is right full.

Proof. Let R be %l R,, where every R, is right full. Then RS=(L3R,,)S=EJ(R,,S)'= U
(R,)=R. Thus R is right full. )

Definition. An element x of a semigroup S is said to be periodic if and only if x"=x
for some positive integer n. S is pointwise periodic (PWP) if and only if each element
of S is periodic. [4](5) .

Theorem 8. Let S be a PWP semigroup. Then R’CR implies R:=R for all right full
set R.

Proof. Let R be right full. Since S is PWP, x"=x for some positive integer # and
any x in R. Thus x is in RRS. Since R is right full, x is contained in X2

Corollary 1. Let S be a PWP semigroup. If R is a right ideal, then R2=R.

Corollary 2. Let S be a PWP semigroup. Then a right ideal is right full.

Definition. A semigroup S is called right stable if R"=R for every right ideal R and
some positive integer #. We can define left stable and stable for a left ideal and ideal
respectiverly. (6]

Theorem 4. Let every right ideal of a semigroup S be right full. Ther S is right stable
if and only if S is stable.

Proof. Suppose that S is stable. Let R be a right ideal. Since SR is a two sided ideal,



there exists some integer » such that (SR)”"=(SR)"*!, Since RS=R, we have that
R(SRY"=(RS)'R=R"R=R"! and R(SR)"=R(SR)""'=(RS)"1R=R"*IR=R"2,

Thus R"*'=R"+*2, Hence S is right stable.

Since every ideal is a right ideal, the converse is true. .

Corollary 1. Let S be a semigroup with the right identity. Then S is right stable if and
only if it is stable.

Corollary 2. Let S be a semigroup with the identity. Then S is right stable if and only
if it is left stable.

Definition. Let R be a right ideal of a semigroup S. If there exists some positive
integer » such that (RL)*"=(RnNL)" for every left ideal L. then R is called power pure.
(6]

Theorem 5. Let S be a right stable semigroup. FEvery right ideal in S be right full. Then
each right ideal is power pure.

Proof. Let R be a right ideal in S. Since S is stable and LR is an ideal for all left
ideals L of S, by theorem 4, (LR)Y"'=(LR)" for some positive integer #. Thus we have
that

(RLY"=R(LR)"'L=R(LR)"L=RLR(LR)"'L=RLR(LR)"L
=(RL2R(LRY""1L=++----=(RLY'R(LR)Y".=(RL)?".

Thus (RL)?"c(RnL)?={(RSN L)%} "c (RSL)"c (RL)"=(RL)*"for some positive integer

#n. Hence R is power pure.
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