A Note on the Semigroup with a Right Full set

By Sang Keun Lee

Gyeongsang University, Jinju, Korea

Y.K. Chae investigated the properties of semigroups with the full set. In this paper, we investigate some properties of semigroups with the right full set.

Definition. A subset A of a semigroup S is said to be right full if and only if AS=A. If a subset A of a semigroup S is said to be right and left full, then A is called full.

If S is a semigroup with the right identity, then every right ideal of S is right full. But the converse is not true.

Theorem 1. The minimal right ideal of a semigroup S is right full.

Proof. Let R be the minimal right ideal of S. Then RS is contained in R. Since RS is a right ideal, RS=R. Thus R is right full.

Theorem 2. The union of any collection of right full sets of a semigroup S is right full. Proof. Let R be $\bigcup_{\alpha} R_{\alpha}$, where every R_{α} is right full. Then $RS = (\bigcup_{\alpha} R_{\alpha})S = \bigcup_{\alpha} (R_{\alpha}S) = \bigcup_{\alpha} (R_{\alpha}S) = R$. Thus R is right full.

Definition. An element x of a semigroup S is said to be *periodic* if and only if $x^n = x$ for some positive integer n. S is *pointwise periodic* (PWP) if and only if each element of S is periodic. (4)(5)

Theorem 3. Let S be a PWP semigroup. Then $R^2 \subset R$ implies $R^2 = R$ for all right full set R.

Proof. Let R be right full. Since S is PWP, $x^n = x$ for some positive integer n and any x in R. Thus x is in RRS. Since R is right full, x is contained in R^2 .

Corollary 1. Let S be a PWP semigroup. If R is a right ideal, then $R^2=R$.

Corollary 2. Let S be a PWP semigroup. Then a right ideal is right full.

Definition. A semigroup S is called *right stable* if $R^n = R$ for every right ideal R and some positive integer n. We can define left stable and stable for a left ideal and ideal respectiverly. [6]

Theorem 4. Let every right ideal of a semigroup S be right full. Then S is right stable if and only if S is stable.

Proof. Suppose that S is stable. Let R be a right ideal. Since SR is a two sided ideal,

there exists some integer n such that $(SR)^n = (SR)^{n+1}$. Since RS = R, we have that

$$R(SR)^n = (RS)^n R = R^n R = R^{n+1}$$
 and $R(SR)^n = R(SR)^{n+1} = (RS)^{n+1} R = R^{n+1} R = R^{n+2}$.

Thus $R^{n+1}=R^{n+2}$. Hence S is right stable.

Since every ideal is a right ideal, the converse is true.

Corollary 1. Let S be a semigroup with the right identity. Then S is right stable if and only if it is stable.

Corollary 2. Let S be a semigroup with the identity. Then S is right stable if and only if it is left stable.

Definition. Let R be a right ideal of a semigroup S. If there exists some positive integer n such that $(RL)^n = (R \cap L)^n$ for every left ideal L, then R is called *power pure*. [6]

Theorem 5. Let S be a right stable semigroup. Every right ideal in S be right full. Then each right ideal is power pure.

Proof. Let R be a right ideal in S. Since S is stable and LR is an ideal for all left ideals L of S, by theorem 4, $(LR)^{n-1}=(LR)^n$ for some positive integer n. Thus we have that

$$(RL)^{n} = R(LR)^{n-1}L = R(LR)^{n}L = RLR(LR)^{n-1}L = RLR(LR)^{n}L$$

= $(RL)^{2}R(LR)^{n-1}L = \cdots = (RL)^{n}R(LR)^{n-1}L = (RL)^{2n}.$

Thus $(RL)^{2n} \subset (R \cap L)^{2n} = \{(RS \cap L)^2\}^n \subset (RSL)^n \subset (RL)^n = (RL)^{2n}$ for some positive integer n. Hence R is power pure.

REFERENCES

- 1. Clifford, A. H. and G. B. Preston, The algebraic theory of semigroups, *Math. Surveys* No. 2, Amer. Soc., Providence, Vol. 1, 1964.
- 2. Chae, Y.K., Pointwise periodic smigroups and full ideals, *Kyungpook Math. J.*, Vol 15, No. 2, 1975, 231-235.
- 3. Masat, F.E., Right group congruences on a semigroups, proc. of the Amer. Math. Soc., Vol. 50, 1975, 1—7.
- 4. Wallace, A.D., problems on periodicity functions and semigroups, *Mathematicks Fyzikalny Caropis* 16, 1966.
- 5. Day, J.M., Semigroups with periodic properties, Semigroup Fourum 7, 1974, 292—309.
- 6. Page, S.S., Stable Rings, Canad. Math. Bull. Vol. 23(2), 1980, 173-178.