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ABSTRACTS. A test particle kinetic theory for reaction dynamics in liquids is presented at
the repeated ring collision level for the hard sphere model. A kinetic equation for the equilibrium
time correlation function of the reactive test particle phase space density is derived and the rate
kernel expression for the reversible chemical reaction of the type A+B=C+D in the presence

of inert solvent S is obtained by the projection operator method.

1. INTRODUCTION

Several approaches for the microscopic theory
of chemical reactions in liquids have been
proposed recently. 1% The generalized Langevin
equation approach at the singlet density level?
and the repeated ring, renormalized kinetic
theory at the doublet density levell, among
others, are successful in incorporating the static
structure and the recollision events which
characterize the description of reaction dynamics
in dense media.

Since these two approaches are based on the
same fundamental Liouville
should be equivalent although it is not very
clear at present time how the equivalence can

equation they

be shown unambiguously due to various
approximations introduced at different levels.
Also it is known that* even in the same
approach the formulation develops differently
at different levels of description.

It is desirable, therefore, to compare aad
analyze various formulations at different levels
in the same approach and between different
approaches at the same level. At present only
two such formulations mentioned at the beginn-
ing are available and it is the purpose of this
work to present another formulation to provide
a missing piece of information.

In this work the repeated ring57,
malized kinetic theory®? at the singlet density
level is presented. A kinetic equation for the

renor-
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equilibrium time correlation function of the
reactive test particle phase space density is
derived in Section 2 and the corresponding
rate kernel expression is obtained in Section
3. Comparision with other formulations and the
direction for future development is suggested
in Section 4.

2. THE PHASE SPACE KINETIC
EQUATION

Definitions. The system of interest here is
a classical simple fluid in equilibrium at tem-
perature T, enclosed in a volume @, and
comprised of N< particles of species a, N#
particles of species B, ete.
describe the thermal fluctuations of a test

Our goal is to

particle’s motion in the fluid in the presence
of a reversible reaction of the type

S
A+B—C+D 4);

where § represents an inert solvent. Reactants
and products are assumed to be dilute in solu-
tion. The dynamical variable associated with
a test particle of species A is the phase space
density®

F2Q,0)=vNo(1—q,()) Ot @
where the operator O% selects a particular
species A for the particle s, The phase space
coordinates of the test particle s are g, (#)=
(R,(®), V,(2)) and the field point, 1=(r|,
p;). Other singlet phase space densities whose
fluctuations are correlated to the test particle
are given by

£, =500 -q:)0; G5 @)

where a=A4, B, C, D, and S.

The test particle phase space density is also
coupled to the fluctuations of higher order
phase space densities

FA812, t)= v No(1—q,(¢))0*

i

2 32-g:)0} Gi#s)

N
f48Q12, #) =50(1-a:()
6(2—q;())0; 0% 4)
The static {equal time) correlation functions

of the phase space densities are defined, for

example, as
CobatB (125 12 ) =(fR (I fF (1'2) 5 (5)
where { }; denotes the thermal average and

the tilde
can be expressed in terms of the equilibrium

represents static quantities, These

correlation functions

03’ (12) =nina £5(01) f§(02) 8" (ry, 12)  (6)
where #5=Nz/Q and f§(r)) is the normalized
Maxwellian distribution

Si(01) = QamkT) 3% exp(—mg0i/2kT)

€
and g*¥(r;, ry) is the two particle static dis-
tribution function. Above definitions can be
generalized for the higher order correlation
function in an obvious way.
The static correlation function of the test
particle phase space density is given by
AL, 1= M F4ADD0 (8)
=a4f1 @10 (11") =w3(1)d(11")
The dynamic correlation function of the test
particle is defined in the Laplace transformed
variable as

CoA(L, 1) =[ de- e FEAL D £1) 0 (9)

Pseudo-Liouville Operator. It is weil known
that the time evolution of a dynamical variable
in the hard sphere system is given by!?

£1Q, =L (1) (10

where the pseudo-Liouville operator 2, is

defined as
.Etz.go'_“:-l?i (11)
with the free streaming part
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L=5 3 Vi 7.0 (12)

i=]
and the interaction part
L= 3 TEED (13)
o ixg

If a collision between species a and P is elastic,
the hard sphere binary collision operator T
(ij) is given by’

TLE)=|Vi; - Ri|0(F V- Ryp)

0 (Rij'"cfap) (5.';—1)0?0? (14)
where a,p is the mean diameter of the colliding
species, R is a unit vector along the line of
centers at contact, and @ is the step function,
8(x)=0 for £<{1 and 1 for £>1. The operator
b:; converts the precollision velocities to their
post collision values. When the collision can
lead to reaction with probability a the colli-
sion operator may be expressed as!!

TG =(1—w) TeGEH+ TR (15)
with aB=AB or CD, and
TGH =0l Vi R;|0(F Vi - Ry
0 (R;j—oap) (5;DIPP—1)020F (16)
where the operator D¢ converts the species
label of particle ¢ from A to C.
Formal Kinetic Theory. The dynamics of a

test particle in fluid can be described by the

dynamic correlation function

CH )= (22470 FHDT)
The formalism used in the derivation of a
kinetic equation for the above correlation fune-
tion is along the same line as in our previous
work. ! Using the identity {(z—2,) 1=z +271
(z—2:)722,, Eq. (17) becomes

2 CAA(L, 1)=C4@1, 1)+

(=L L)) (18)
The effect of £, acting on fA(1) is

L f )= =28 W)+ TE(12) f42(12)
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+(1—a) T£2(12) f43(12)
+TH13)F45(13) (19

in the low density limit of reacting species
and the elastic collision between the test
particle and the solvent particle is considered
to be important other than the collision
between the potential reactants. The field point
free streaming operator Z§(1) is

L (D=vf-p2 20)
and the elastic collision operator is!
T2(13) =T2(13) + 013 * #150(ri3—64,) (21)

where T4(13) is defined as in Eq. (14} but in
The subscript £ in
T22(12) explicitly denotes the elastic collision
but it is omitted in T3°(13) bhecause of no
reaction in the A-S collision. The reactive

the field point notation.

collision operator is
T#2(12) = TRE(12) +avyy- F10 (r1z— 0 48). (22)

A short hand notation for integration over
barred variables is introduced in Eq. (19).

Substitution of Eq. (19) into Eq. (18) gives
the kinetic equation for C/-4(1,1) :

{2+ L2 (DYCH (1, 1) -CH4(1, 1)
=T#(13)CA84(12,1") + (1—-w) T22(12)
CAB.A(12, 1)+ T25(13)C45-4(13,1)  (23)

At this point it is convenient to introduce a
matrix formulation to generalize Eq. (23) :

(z1+LDICA, 1)-C0, 1) 24
=V(2)CR12, 1)+ T(A)HC5 (3, 1)

where
(gicy 20 |(3P‘"a‘(1,1') M1
L3} =1 K LA = -
h L o Ljar L:"""(l,l') 1
(258 (12)+iz-a )78000) 22 (12)
T (12) = N R _
- L =D (12) FE a2 -« 1Eta2)
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The reactive collision operator T#% is written
here as the sum of two contributions, the for-
ward and reverse reactions,

T#2(12) = TR2(12) - T#7-(12)
with the former term the part that changes
species.

As it stands Eq. (24) is not in a closed form
since the two point correlation function is
coupled to the higher point correlation function.
In order to make a closed kinetic equation the
memory function formalism of renormalized
kinetic theory is now introduced. The memory
function matrix qés(l, 1) is defined by

#(1, DICE, 1) =T(BCRZ, 1')

+T(A3)CS(13,1)  (25)
so that Eq. (24) can be rewritten as
1+LICA, 1) -4, 2CEC, 1)
=C(L 1) (26)

The physical meaning of the memory function
is apparent in Eq. (26). Since the first term
on the left hand side is responsible for the
free sireaming of a test particle, the memory
function contains all the informatien on the
effects of the rest of the particles in solution.
Hence it is expected that the structure of
memory function is a manifestation of many-
body interaction and its analysis is the key to
understanding the reaction dynamics in liquids,

&3

&

Using the techniques of the renormalized
kinetic theory %° one can separate the memory
function into static and dynamic parts. The
static memory function is given by

#1, DEE, 1)=VaDH TR, 1)

+T(3C13 1) (2n

and the dynamic memory function is
‘id,(l’ ?)(:39. 1)
=POaHGR(12, 1) 77(12)
+TOHG A3, 13)TT(1'3)
+P2)62, 13 TT(1'3)

+TADGRAS, 12) 972y (28)

The four-point correlation functions appeared
above are defined as
GRR(12, 1'2) =CRR(12, 1'2)~CR(12, T)
CIT, TOCR@, 12) |
GR5(12, 13)=C*(12, 1'3) —-CR(12, T')
CHT, 2052, 1'7) .
GR(13, 1'2) =C5*(13, 1'2)—C5(13, T')
CHT, 2)CRE@Y, 1Y)
G513, I'3)=C55(13, 1'$) -C5(13, T)
CUT, IO 1)

with
I'4
o S PR P! cm*cn(la.l-z‘D
chi(rz,1r2) = '
Lc"D"‘B(lz.J.':z'] cCDiCD{ 35 1020y
.
RS, o cMBeAS(15 11500 cFBaCS(3 109
¢f3(12,130) =
cfDiAS(12,1030)  ¢FPeCS(22,209¢)
- J/
58 [C“S""Bu:f.l-z-) 0 )
g=M(13,1027) =
= C5,CD
o ¢ F(13,102)
-
8518515 1130y o ~
¢35(13,1'3) = ‘
= . ) CCS'CS(13,1'3')
p,
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The superscript T denotes the matrix transpose
and Czi(1’, 2) is the inverse of “Cs(l’, 273,

The Static Memory Function. The static

correlation functions in Eq. (27)may be

approximated in the low density limit of
reactants as

6‘(1 1) =8(11") w(l)
C"Raz 1) 5(11) w(12) (29)
03(13, 1)=3(11") w(lS)

where the diagonal matrices of equilibrium
correlation functions are given by

$5(13) 0
w5°(13)

Substitution of Eq. (29) into Eq. (27) and
combining with Eq. (25) gives
# (1. DCE 1) (30)
={V (12)e 02)e™ (1)
+7 (lﬁ)g(lﬁ)g{‘(l)} c 1)

o19=["?

At the static memory function level the kinetic
equation for E; (1, 1’) becomes

1L+ D~4 DICQ 1)

om=[" (0 6(1{))]' =C(1 1) (31)
a}a”(12) 0 where
e
[ T2 (12) of2(12) w0 (1) -T#2(12) 0§°(12) mc'(l)]
V71 (1) 022 o) THL(D) w5212 5" ()
_[T#3U2) wﬂ'(l?)mo (1)+T43(13) o3*(13) 0" (1) 0
"-_‘—(”‘[ 0 £2(13) w$P(12) of” (1) + TS (13) 0§ (13) o' (1)

and the identity!

Tk,f_(lz) (1—a) T43(12)
=T (12)— T£2(12)

with

af—(12) |01+ F12]0 (V12 1)
(rie—oan) 51201 0%

has been used.

The Dynamic Memory Function. Up to the
static memory function level approximation,
the free streaming of the test particle and
statically correlated collisions, either reactive
or elastic, between the test particle and its
partner are accounted for. Another important
contribution due to dynamically correlated
collision phenomenon which is absent in the
Enskog-like theories is contained in the dy-
namic memory function. As shown in Eq. (28)
the dynamic memory function has a rather
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complex structure. It has four contributions; the
first two of them may be put together as
“diagonal” terms and the other two terms as
“cross” terms. In this work the “diagonal”
terms are assumed to be major contributions to
the dynamic memory function and further
analysis is carried out for these two terms.
This is in the same spirit as the repeated ring
approximation introduced earlier®?,

The dynamic memory function becomes in
this approximation

$#LDCE 1)
~P(12)Grr (12, 1'Z) PT(1')
+T(19) G503 1) T70F)  (29)
The repeated ring operators can be constructed
from the above expression such that

#(1, DCE 1) =
RO+ROICA 1) (30)
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where!?
RM=V(12) (z1+L(12)
-T(123) «{123) ©~(12)
—Y@Va) 02 v (3D
R (=T (13){z1+L (13)
~T, (12) 0123 (1) - T (13)
-1 (138 013D ¢(13))

T13) cgﬂ(lﬁ) g;“(l) (32)
with
I N
‘a‘g rA + vg.aa 0
;-0(12) =
C.3C . yD =D
\ ° i vrl * "'z'ﬁr,‘,
.
VA.BA L 45,98 2
an - T T °
C C
L 0 wl-q_:L + vgﬁrij
" ~
5(13) + 18529 0
T_(129) =
\ 0 513y + TS(29)
7/ -~
_ T™5(14) + 155(3) 0
T (1) =
L 0 TSy + T55(a) J
WS (123) o ]
w,(123) =
= CD.
L © weS(123)
WASS(130) o )
W, (1) =
0 w55 (131)
-
- Invoking another identity!
TE2(12) + {T4(13) + T2(23)}
w§P5(193) 0 =TE(12) +445(12)
+A%(12) —012-7,,, BWAB (r12) (33)

where

14 (12) =ni_[d3 g985(ry, 1y 1a)

248 (r1) ! TH(13) £35(vs)
and B W4(r12) = —Ing48(ry,),
the repeated ring operators can be rearranged
to- give
R()=V(12) = 1+L D +T (13)
~Tep- (12— AU+ W (12)} 7
V(12 o (12) X1
=PU2)G0Z )V (12) » (12) 711 (34)

R(D=T(13) {x 1+L(13)
-T (12)  123) &7'(13) - T (13)
—A33) + W 13} TA3) ©(13) (1)
=TUDHGA3, » TAHe1)e (1) (35)

where
- B2 (12 288 (12)
(12) =
=h- SR (12) PR $EY
Tg(lﬂ 0 R
T (12) =
= ° 75°(12)
A
S(13) o
I3 = cs
0 T2°(13) )
~
_ A882) + XBS12) 0
A_Q(12) = - .
= ACS012) + A?s(lz)J
\
. 450 « 1580 0
é (13) = —
B8an « X¥ayn
-
[ 12" Vr) ﬂ“’ (ry,) °
W'
Vi vr (“12))
. - ﬁ ‘N
Viy Y M Stry ) )
() = .
0 iy Ve ﬁwcs(rn)
13 P,

Combining Egs. (31), (34), and (35), one
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can obtain the final kinetic equation in the
repeated ring approximation:

(e 1HLID+4, (D=4 D~R Q)
~R (}C,4, 1)=C (1, 1)

or

{z1-L (D}C (1, 10=C(, 1) (36)

which describes the dynamics of a test particle
in phase space. The general structure of the
kinetic equation is similar to the one derived
earlier using the generalized Langevin equation
approach? but the detailed structure is different
because the dynamical variables of interest are
different. This point will be discussed further
in Section 4.

3. THE RATE KERNEL

In order to obtain the rate kernel from the
final kinetic equation the velocity and the
coordinate dependences are projected out by a

diagonal matrix projection operator P= [?ﬁ)g]
and its transpose PT. The elements of the pro-
jection operator matrices are defined, for exam-

ple, by
PACHAL, 1) =07 f3(en) fd1 CAAQ, 1)
craq, 195=far casq, 1)
Q7 Sz 37
The projected kinetic equation becomes
1-P2L VP-PLDz1-QL (1))

QL W} PG 1) PT=PLA, 1) I
(38)

which can be further reduced to an equation
of the form of the macroscopic rate law expres-
sion using the number conservation in elastic

collision
1P, 2
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where fs::fd] ar Es(l’ 1), 9:!_@, and o
:[né rg] The rate kernel k(z) has three

contributions

k(x)=k +RRRRNE (40)
with
_ k g48(645) ~k? g€ (acp) (402)
=« |~k g4 (o4p) K g2 (ocp)

#r=—0fa1de T 12)G (12, )T, (12)
o (120 (1) f (e)n'™ (40b)

BVE=Q- _[dl {QR,(D‘Z'R_“@E (12, z)
T (12 © (12) &' (1)}
[x1-QL (1)17QIA_(1)
-T (DG U2 ») T_(12)

C0(1 0P ()£ wrt (400)

13 ()

and LAY, :[ 0 fo‘:(tg)]'

The equilibrium forward and reverse reactive
collision frequencies are defined by

k?f :J.drlgj.dl?l dﬂz ’?‘!J?“-;- (12) ft:‘ (t'l) fﬂa(t’2)
ko= I dry j dv,do, TSR (12) ££ (o) £2(vs)

The first term in Eq. (40} is the equilibrium
contribution which incorporates the static cor-
relation through the radial distribution function
and the second term is due to the repeated
ring collision event which is important in
describing the dynamics of particles in dense
The last
correction to the rate kernel which has been

media, term is a nonequilibrium
known to have small contribution in certain
circumstances'?,

When the reverse reaction is ignored the rate
kernel expression can be decoupled and the
matrix formulation is no longer necessary.
The resulting expression becomes, neglecting
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the nonequilibrium correction,

b (2) = kg 4P (0as) — 011 d2 T42 (12)
Gi(12, 2) T (12) g8 (ra) Fiwy)
F2(e) (1)

with

G#5(12, =)= e+ L82(12) + TA2 (12) — T2
12) —4%(12) 4012« P BWAB(rp)} 1

4. DISCUSSION

In this work the repeated ring, renormalized
kinetic theory for a reactive test particle in
liquid at the singlet density level is presented.
This formulation should be compared with the
same approach at the doublet level' and then
with the generalized Langevin equation
approach at the singlet level? both of them
presented earlier. The doublet level of the
generalized Langevin equation approach is yet
to be formulated but it is expected that its
formulation would be rather complex due to
more complicated couplings between higher
density fields.

The kinetic equation derived in the doublet
level repeated ring, renormalized kinetic theory
has the form!

fz1+L02)+T (12)-T(12)-4 (12)
+ W (12) -R12)}€C(12, 1'2)
=Caz, 1'?) (42)

Since Eq. (42) is derived for a reactive test
pair of particles it contains ‘contributions due
to direct collision of the pair and the potential
of mean force for the pair which are absent in
the kinetic equation for a test particle, Eq.
(36). On the other hand, the reactive collision
effect appears in Eq. (36} at the Enskog level
and in the repeated ring operator.

The kinetic equation derived in the gener-
alized Langevin equation approach at the singlet

level has the same structure as Eq. (36) when
the couplings between the test particle field
density and the doublet field densities are
properly taken into account. This shows the
equivalence of two approaches at the singlet
level provided various approximations are in-
troduced at proper stages as shown.

The rate kernel expression obtined in the
repeated ring, renmormalized kinetic theory at
the doublet level is given by!

k(z) :gq_g—x d1d2 ZR_(12) (21-L (12) b
T (12)glro) £ () fv)  (43)

with
_[e*B(re) 0
8;("12)—[ 0 gcn(flz)}
_[fE (@ 0
L) *[ 0 fé’(wz)]

which is similar to the expression Eq. (40)
without the nonequilibrium correction term.
It is interesting to notice that the first two
terms in Eq. (40) come from g’ﬁ(l) _‘,;D term in
Eq. (38) whereas only k term in Eq. (43} is
originated from g? =Ife (15; g) type term. The
second term in Eq. (43) comes from the term
containing the complementary projection opera-
tor Q.

The generalized Langevin equation approach
at the singlet level gives the same expression
for the rate kernel as in Eq. (41) when the
reverse reaction is neglected but the propagator
between two reactive collision operators is slig-
htly different. This difference may be attributed
to the fact that the effects of doublet fields on
the propagation between two reactive collisions
are different due to the different constructions
of doublet density fields in two approaches:
This point may be further clarified when the
generalized Langevin equation approach at the
doublet level is properly formulated.
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