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요 약. 용액중에서 화학반응을 설명하기 위하여 한개의 대표적인 업자의 반복적 충돌현상까지 고 

려한 동역학적인 이론을 경구모델을 사용하여 연구하였다. 반응성을 지닌 대표적인 입자의 상공간 

밀도의 시간상관함수가 만족시키는 동역학방정식을 유도하였고 이로부터 비활성 용매 S중에서 일 

어나는 A+B=C+Z> 형태의 가역반응에 관계되는 반응속도 계수의 인자를 투영연산자방법으로 구 

하였다.

ABSTRACTS. A test particle kinetic theory for reaction dynamics in liquids is presented at 
the repeated ring collision level for the hard sphere model. A kinetic equation for the equilibrium 
time correlation function of the reactive test particle phase space density is derived and the rate 
kernel expression for the reversible chemical reaction of the typein the presence 
of inert solvent S is obtained by the projection operator method.

be shown unambiguously due to various 
approximations introduced at different levels. 
Also it is known that4 even in the same 
approach the formulation develops differently 
at different levels of description.

It is desirable, therefore, to compare aad 
analyze various formulations at different levels 
in the same approach and between different 
approaches at the same level. At present only 
two such formulations mentioned at the beginn­
ing are availa비e and it is the purpose of this 
work to present another formulation to provide 
a missing piece of information.

In this work the repeated ring6,7, renor­
malized kinetic theory8,9 at the singlet density 
level is presented. A kinetic equation for the 

—291 —

1. INTRODUCTION

Several approaches for the microscopic theory 
of chemical reactions in liquids have been 
proposed recently. '얘 The generalized Langevin 
equation approach at the singlet density level2 
and the repeated ring, renormalized kinetic 
theory at the doublet density level1, among 
others, are successful in incorporating the static 
structure and the recollision events which 
characterize the description of reaction dynamics 
in dense media.

Since these two approaches are based on the 
same fundamental Lionville equation they 
should be equivalent although it is not very 
clear at present time how the equivalence can
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equilibrium time correlation function of the 
reactive test particle phase space density is 
derived in Section 2 and the corresponding 
rate kernel expression is obtained in Section 
3. Comparision with other formulations and the 
direction for future development is suggested 
in Section 4.

2. THE PHASE SPACE KINETIC 
EQUATION

Definitions. The system of interest here is 
a classical simple fluid in equilibrium at tem­
perature T, enclosed in a volume Q, and 
comprised of Na particles of species a, 
particles of species & etc. Our goal is to 
describe the thermal fluctuations of a test 
particle1 s motion in the fluid in the presence 
of a reversible reaction of the type

S
A + B^C+D (1)

where S represents an inert solvent. Reactants 
and products are assumed to be dilute in solu­
tion. The dynamical variable associated with 
a test particle of species A is the phase space 
density6

〃(1*) = /商1-M)) O수 (2) 
where the operator Oj selects a particular 
species A for the particle s. The phase space 
coordinates of the test particle s are qs(£)= 
{R$ (t), Vs (?)) and the field point, 1— (rx, 
0). Other singlet phase space densities whose 
fluctuations are correlated to the test particle 
are given by

/a(l\ Q = 2技(1‘一Qi。))。?, (让구느s) (3) t=i

where a=4 B, C. D, and S,
The test particle phase space density is also 

coupled to the fluctuations of higher order 
phase space densities

产”(12,七)=/願(1一膑)6

2字(2—(財$)i=l
N

/e(12, t) = 20(l—。心)) «.i=i
分(2—幻。))Of ⑴ (4)

The static (equal time) correlation functions 
of the phase space densities are defined, for 
example, as

C씨%叩 a? ； 1'2') = ”咀12)户"([2')〉0 (5) 
where〈〉° denotes the thermal average and 
the tilde represents static quantities. These 
can be expressed in terms of the equilibrium 
correlation functions

e曾(12)=戒邓(门，A) (6) 
where n^=N^/Q and fo(vi) is the normalized 
Maxwellian distribution

foCVi) = (2兀7履T)~3/2 exp(—mavl/2kT)
(7) 

and #邓(了1, Fa) is the two parti시e static dis­
tribution function. Above definitions can be 
generalized for the higher order correlation 
function in an obvious way.

The static correlation function of the test 
particle phase space density is given by
"(i, r)=<"⑴・"(r)〉o ⑻

=泌/堂(01”(11一')=“*(1”(11')
The dynamic correlation function of the test 

particle is defined in the Laplace transformed 
variable as

G“(l, 1')=，如-”〈須?(小)・"(1')〉。⑼

Pseudo-Liouville Operator. It is veil known 
that the time evolution of a dynamical variable 
in the hard sphere system is given by10

川 1, t)=o"•方⑴ (10)

where the pseudo-Liouville operator 0土 is 
defined as

辺土=N° 士 N'土 (11)

with the free streaming part
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S Vi > Vi 01 (12)a >=1

and the interaction part

S Tg) (13)a,B i>j

If a collision between species a and § is elastic, 
the hard sphere binary collision operator T領 
(ij) is given by7

君(诺) 니 K•广岳J。(干 K厂岛)

<5 (R订—。얘) 成厂1)(无0§ (14)

where 6(邙 is the mean diameter of fhe colliding 
species, k is a unit vector along the line of 
centers at contact, and 6 is the step function, 
。愆)=0 for and 1 for The operator
bjj converts the precollision velocities to their 
post collision values. When the collision can 
lead to reaction with probability a the colli­
sion operator may be expressed as11

Tg(ij) = (1-a) T|i(v) + (15)

with or CD, and

T逐(")= 이 Kj•■島 I。(干 K,•••馬)

b如)(晶霽 C0)搜—1)0?0了(16) 

where the operator 0쎠° converts the species 
label of particle i from A to C.

Formal Kinetic Theory. The dynamics of a 
test parti시e in fluid can be described by the 
dynamic correlation function

The formalism used in the derivation of a 
kinetic equation for the above correlation func­
tion is along the same line as in our previous 
work.1 Using the identity 伝一辺+尸二广+广 

3—虹尸Eq. (17) becomes

])=負槌(1, 
伝一厶尸宜⑴〉o (18)

The effect of 厶 acting on J즈⑴ is

M ⑴= + T^(12)/4B(12)
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+ *s(i3)户 S(场) (19)

in the low density limit of reacting species 
and the elastic collision between the test 
particle and the solvent particle is considered 
to be important other than the collision 
between the potential reactants. The field point 
free streaming operator &⑴ is

用⑴=i宀" (20)

and the elastic collision operator is1

T^(13) = T^a3)+r13 •无3必尸 13一。•弘)(21) 

where T竺(13) is defined as in Eq. (14) but in 
the field point notation. The subscript E in 
7麥(12) explicitly denotes the elastic collision 
but it is omitted in T^s (13) because of no 
reaction in the A~S c시lision. The reactive 
collision operator is

‘理£(12) = T楚(12) + ai?22 , ^12^(^i2~^ab)- (22)

A short hand notation for integration over 
barred variables is introduced in Eq. (19).

Substitution of Eq. (19) into Eq. (18) gives 
the kinetic equation for Cf,A (lf 1'):

杈⑴}"(i, if)

=7^(12) (12,1') + (1-a) T^(12)
CAB'A(12f r)-bT^s(13)CAS-A(13, lf) (23)

At this point it is convenient to intro허ice a 
matrix formulation to generalize Eq. (23):

{zl+Z(l)}C(l, lf)~C(l, lf) (24) ==o =s =s
= V-(12)C«(12, l') + g)CS(]3, 1，) =— = =— =

where
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f亍貝顼) c 、
已(1力=I

' [° 骨气1力

CR(12,1')"

― C^^^dZ,!1 ) CCD,C(12,1'J

(cas,a(13i11) 0 '

으S(4,“) = ^ .

The reactive collision operator Tr- is written 
here as the sum of two contributions, the for­
ward and reverse reactions,

男여里 12) = 7령은 (12) — T辭 (12)

with the former term the part that changes 
species.

As it stands Eq. (24) is not in a closed form 
since the two point correlation function is 
coupled to the higher point correlation function. 
In order to make a closed kinetic equation the 
memory function formalism of renormalized 
kinetic theory is now introduced. The memory 
function matrix 6(1, lz) is defined by=s

6(1, 2)C(2, r)-V(12)C^(12, lf)
+ 7(13) C5 (13,19 (25)

so that Eq. (24) can be rewritten as

kl+L(l)}C(l, r)—©(L 2)C(2, r)= =0 =s =$ =s
= C(1, 1') (26)—S

The physical meaning of the memory function 
is apparent in Eq. (26). Since the first term 
on the left hand side is responsible for the 
free streaming of a test particle, the memory 
function contains all the information on the 
effects of the rest of the particles in solution. 
Hence it is expected that the structure of 
memory function is a manifestation of many­
body interaction and its analysis is the key to 
understanding the reaction dynamics in liquids.

Using the techniques of the renormalized 
kinetic theory 8t9 one can separate the memory­
function into static and dynamic parts. The 
아atic memory function is given by

暨“ 2)C(2, r)= V(12)C«(12, 1')
+ T(13)Cs(13, t) (27)

and the dynamic memory function is

힌、2)C(2, 10
'=V(12)GR&(：2 1'2') Vr(l,2,)

=— = =+

+ T(13)Gss(13, l,3,)Tr(l,3,)
+y(逐&海, ⑶호 W)

+ 尸(13) GSR (13, 12)俨(12) (28)
=- = =十

The four-point correlation functions appeared 
above are defined as

g죠"12, 12)= 羿(12, 12)—g&(12, P)
CFT, 2f,)CR(2f,, 12) =s =
竺(12, 13)-0(12, ?)

C-侦，2")cs(2〃，13) -
=s = '

gs"13, l'2')=gs"i3, 1，2')—gs(i3, D 
2r,)CR(2", 1'2') -

Gss(i3, 1'3') = Css (13, 1'3')—CS(13, 1') 
= = ==

di', 2,,)CS(2", 1'3') =s =

with

<cABtAB(12(1，2, j

cCDfAB^12(1，2，j

CA3,GL(lf：(l*2^)

CGD,CD(12,1'2')

cRS(i2,ie3,)=

cABtAS(12|113，j

CCD,AS(12,1'3') 

J

CAB,CS(12,1'3')

cPD,CS(12,1,3')
丿

CSRd3tl'2,)=

CAS,AB(13,1'2,)

0 
J.

„0 、

CCo)CD(13,1,2')

CSS(13,1I3*)=

<CAS'AS(13,1'3'J

0

0

ccs(cs(13[1，3()

J
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The superscript T denotes the matrix transpose 
and CzKl\ 2”) is the inverse of C(r, 2〃).

~s

The Static Memory Function. The static 
correlation functions in Eq. (27) may be 

approximated in the low density limit of 
reactants as

gd, r) =5(ir)錦⑴

争(12, r)=2(ir)W(i2) (29)

c5(i3, r)=a(ir)co(13) = =0

where the diagonal matrices of equilibrium 
correlation functions are given by

으。⑴=lo 浦⑴L

时Kl2) 이
驾Q2)=L)妒(I2)L

伊髀(②4俨(12) a广⑴

幺一⑴-〔项诳(12)妒(12)妒⑴_ _

rTf£(i2)妒(12)醐-'⑴ + T1s(13)姉(成必⑴
愛)』 0 况(12)密(12)说”⑴+於(佰)必(13)说-'⑴

and the identity1

=列之(12) 一寫心2)

with

T셔*- (12)= 삐 v12 子시 0(012 - 四2) 
d(广绞―0AB)晶。《片

has been used.
The Dynamic Memory Function. Up to the 

static memory function level approximation, 
the free streaming of the test particle and 
statically correlated collisions, either reactive 
or elastic, between the test particle and its 
partner are accounted for. Another important 
contribution due to dynamically correlated 
collision phenomenon which is absent in the 
Enskog-like theories is contained in the dy­
namic memory function. As shown in Eq. (28) 
the dynamic memory function has a rather

V시. 25, No. 5, 1981

兼甘％曲

Substitution of Eq. (29) into Eq. (27) and 
combining with Eq. (25) 흥ives

駅(1, 2)C (2, V) (30)
=s =s

=以(12)錦(12)</(1)
+ T(13>(13>-i(1)}C(1, V)

=— =0 =0 =s

At the static memory function level the kinetic 
equation for C (1, 1，)becomes=s

{zl+L(l)+A (1)~A (1)}C(1, V) 
= =n =R— =— =S

= c(l, 19 (31)

where

-T/^(12) a俨(12)赫-‘⑴]
TSA(12) a俨(12)敏⑴ J

0 1

complex structure. It has four contributions； the 
first two o£ them may be put together as 
“diagonal” terms and the other two terms as 
“cross” terms. In this work the "diagonal” 
terms are assumed to be major contributions to 
the dynamic memory function and further 
analysis is carried out for these two terms. 
This is in the same spirit as the repeated rin흥 

approximation introduced earlier6*7.
The dynamic memory function becomes in 

this approximation

皱 2) Cp, t)
飞引12)9砧(12, (12)
+歹(13)GSS(思 13)乔(◎) (29)

=— = =*+
The repeated ring operators can be constructed 
from the above expression such that

纟：(L 2)C(2, T)=
孫 骨 ⑴+R⑴}C(l, r) (30)

그 1 =2 =S
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where13

&(1)=卩(②(sl+L(12)
=1 =— = =0

-£(123) <u(123)纹i(12)
一卩(12)}-1卩(12)<0(12)“尸(1)

=— =— =0 =0

R (1)=T (13)Ul+i(13)
=2 =— = =o

-孩(12) &(123) 으「(13)- T_(13)
-TQ34) «(134)孑(N)}-广一

T(13) co(13) a尸⑴
=一 =0 =0

(31)

(32)

with

却2）=

‘V：•零 + V* 毎:

、 0

o

・g曲(，2)t 7^(13) •爲(巧)

and 。WAB(r12) = 一 Ing仙(s),

the repeated ring operators can be rearranged 
to give

7?(1) = V(12) (zl+L(12) + T(12)
=1 =— = =0 —R—

-T=e- (12) -£(12) + W' (12)} T
7(12) a)(12) 으>「(1)

= V(12)G(12, z) V (12) co (12) (34)
=—■ =1 =— =0 =0

g(l) = T(13) {z 1+L(13)
-T_(12) w (123) w-'ClS) - T_(13)
-A (13) + W' (13)} t 7(13) a>(13)矿1 ⑴

=— = =— =Q =0

=T(13)G(13, z)T(13)a>(13)a尸⑴(35)

프。（고3）

T_(123)

聲S（13） +页!％幻）

0

'辱聲+哆對

o

冷핲+峠.鹫

0

营％L3） 十页平（23）

where

프R一 Q2)

프〜（比）

幣扑2）

-驟（12）

一嘿（⑵

嘴_（12）

啰（丄2） 
E.-

0

0 T음?（丄2）

页?％14) + tSS(34) 0
2■⑴ 4)

T^s(13) 0

00

쓰。(123)

矽 S(W + 雲％34) 1°오(13) - j
프 (13)

^^3(123)
0

A_(12)그

顶!%豎） 邛吳고2） 0

0 
X.

U)oDS(123)
―

、 ° 天乎（丄2）+ 莆 $（고2）
丿

0 A_(13)
3?SS(i34)

A^S(13)或乎⑴)

쓰 g舛）

0 3 응 SS(im)
0 及S(13) ,档項）J

;Invoking another identity1
T^(12)+ (Tis(13) + T?(23)}

6俨(123) 3笋'=7實(12)+孙(12)
+A?sa2)-v12-7ril^WAB(r12)

W (12)

*2•歸烈％*）

0

0

知•电广糾％）

(33)
W(13)

where

*13"^r13/5WAS(r13)

. 0

0

、* 忠 I?/지何 E）

』'平(12)="%，43 gABS(ri, r2, r3)
Combining Eqs.(31), (34), and(35), one
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can obtain the final kinetic equation in the 
repeated ring approximation:

{z 1+L(1) +A (1) ~A (1) 一R (1) 
~R~(1)}C (1, [)=8(1, 19 

=2 =S =S

or

(zl-L (1)}C (1, r)=C(l, D (36) — =R =S =S

which describes the dynamics of a test particle 
in phase space. The general structure of the 
kinetic equation is similar to the one derived 
earlier using the generalized Langevin equation 
approach2 but the detailed structure is different 
because the dynamical variables of interest are 
different. This point will be discussed further 
in Section 4.

3. THE RATE KERNEL

In order to obtain the rate kernel from the 
final kinetic equation the velocity and the 
coordinate dependences are projected out by a 
diagonal matrix projection operator &)=[《多 

and its transpose W The elements of the pro­
jection operator matrices are defined, for exam­
ple, by

初cHi, i，)=qt成,])卩 8%, 1，) 

8，4(i, 1')残=[卩1‘ cA'A(i, r)J

时須传；) (37)

The projected kinetic equation becomes

(l)r1
QL ⑴} %C(1, l')g)T=5e(l, Y)g)T 
= —R = =S = = =S =

(38)
which can be further reduced to an equation 
of the form of the macroscopic rate law expres­
sion using the number conservation in elastic 
collision :

{zl+k(z)n'}P=P (39)== ==s =s 
Vol. 25, No. 5, 1981

where P-JtZl dX C (1, 1‘)，Q=[T), and n' 

=["d gL The rate kernel 的)has three 

contributions

k(z)—k + kRR+kNE (40)
= =eq = =

with

,_[ ^fgAB^AB) -肆 gC%CD)] s、
=s 3 妒^gCD(.GCDP a

妒T (12)G (12, z)T (12)
e (12) a尸⑴須(幻i)?矿 t (40b)
=0 -0 =0 =

kNE=Q~1[d\ {A ⑴-‘尸(12) G (12, z)

T_(12) w (12) 으^⑴}
釦-Q；⑴产Q{/1 (1)

-- ==R = =R—
-T (12)G (12,对 T (12)=R— =1 =R—

• to(12) a广(1)} f (0》z'T (40c)
—0 =0 =0 =

The equilibrium forward and reverse reactive 
collision frequencies are defined by

衅=jdr^dvY dv2 [曾一 (12) (巧)(业)

砰=Jdr^dvx dv2 Tfj? (12) fS (耳)丿号(％)

The first term in Eq. (40) is the equilibrium 
contribution which incorporates the static cor­
relation through the radial distribution function 
and the second term is due to the repeated 
ring collision event which is important in 
describin흥 the dynamics of particles in dense 
media. The last term is a nonequilibrium 
correction to the rate kernel which has been 
known to have small contribution in certain 
circumstances12.

When the reverse reaction is ignored the rate 
kernel expression can be decoupled and the 
matrix formulation is no longer necessary. 
The resulting expression becomes, neglecting 
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the nonequilibrium correction,

"=蜘4%庭)—Q-ijdl d2 亍牌一 (12) 

(扩(12, z) T^(12) gm(广％) •常(边) 

/甘(힌 2) (41)

with
G/(12, z) = {z+Z萨(12)+E蜕(12) 一丁爵 

(12)一万乎(12)+小2 -久孫卩〃*门2)}7

4. DISCUSSION

In this work the repeated ring, renormalized 
kinetic theory for a reactive test particle in 
liquid at the singlet density level is presented. 
This formulation should be compared with the 
same approach at the doublet level1 and then 
with the generalized Langevin equation 
approach at the singlet level2 both of them 
presented earlier. The doublet level of the 
generalized Langevin equation approach is yet 
to be formulated but it is expected that its 
formulation wo니d be rather complex due to 
more complicated couplings between higher 
density fields.

The kinetic equation derived in the doublet 
level repeated ring, renormalized kinetic theory 
has the form1

{z 1+Z(12) + T Q2)一7X12)一스一(12)
+ 卩尸(12)—硏12)}£(12, 12)

=0(12, 1/2') (42)

Since Eq. (42) is derived for a reactive test 
pair of particles it contains ^contributions due 
to direct collision of the pair and the potential 
of mean, force for the pair which are absent in 
the kinetic equation for a test particle, Eq. 
(36). On the other hand, the reactive collision 
effect appears in Eq. (36) at the Enskog level 
and in the repeated ring operator.

The kinetic equation derived in the gener­
alized Langevin equation approach at the singlet 

level has the same structure as Eq. (36) when 
the couplings between the test particle field 
density and the doublet field densities are 
properly taken into account. This shows the 
equivalence of two approaches at the singlet 
level provided various approximations are in­
troduced at proper stages as shown.

The rate kernel expression obtined in the 
repeated ring, renormalized kinetic theory at 
the doublet level is given by1

d2 T (12)〔幻一L (12)〕t
= =eq J =R— = =R

• T (12)g(p) /‘(巧)/(히2) (43)=R— = =0 =0

with

費5 티 o 萨%®]

牛』％班)削二J

which is similar to the expression Eq. (40) 
without the nonequilibrium correction term. 
It is interesting to notice that the first two 
terms in Eq. (40) come from 0)乙(1)涉 term in 

==R =
Eq. (38)whereas only k term in Eq. (43) is =eq
originated from ④ £ (12) 0)type term. The 
second term in Eq. (43) comes from the term 
containing the complementary projection opera­
tor Q.

The generalized Langevin equation approach 
at the singlet level gives the same expression 
for the rate kernel as in Eq. (41) when the 
reverse reaction is neglected but the propagator 
between two reactive collision operators is slig­
htly different. This difference may be attributed 
to the fact that the effects of doublet fields on 
the propagation between two reactive collisions 
are different due to the different constructions 
of doublet density fields in two approaches. 
This point may be further clarified when the 
generalized Langevin equation approach at the 
doublet level is properly formulated.
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