Sulfamethoxypyridazine의 결정 및 분자구조＊

率榮子－林英子＊＊${ }^{(1)}$
이화여자대학교 문리 과대학 화학과
＊＊숙명여자대학교 이과대학 화학과
（1980．12． 29 접수）

The Crystal and Molecular Structures of Sulfamethoxypyridazine＊

Young Ja Lee and Young Ja Park＊＊
Department of Chemistry，Ewha Womans University，Seoul 120，Korea
＊＊Department of Chemistry，SookMyung Women＇s University，Seoul 140，Korea

（Received Dec．29，1980）
요 약．Sulfamethoxypyridazine， $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$ 의 결정 및 분자구조롤 X －선 사진 회절법으로 구명 하였다．결정구조는 직점법으로 랂혀 최소자숭법으로 졍밀화 하였으며 2615 개의 회걸 반점에 대한 쳐종 R 값은 0.085 이었다．비대칭단위내의 분자 두개 A 와 B 는 $\mathrm{S}-\mathrm{N}(2)$ 결합에 대한 형태가 서로 다븐 형태 이성질쳬를 이루며， $\mathrm{N}(2 \mathrm{~A}) \mathrm{H} \cdots \mathrm{N}(3 \mathrm{~B})$ 와 $\mathrm{N}(2 \mathrm{~B}) \mathrm{H} \cdots \mathrm{O}(\mathrm{IA})$ 수소 결합으로 연결되어 있다． 벤젠과 피리다진 고러의 면들이 이루는 자온 분자 A 에서는 89° ，분자 B 에서는 77° 이다．
ABSTRACT．The crystal structure of sulfamethoxypyridazine has been solved by the direct me－ thod and refined by least squares methods from three－dimensional data collected by the multiple－ film technique to a final residual of 8.5% ．Two molecules（ A and B ）in one asymmetric unit are different each other in the conformation about $S-N(2)$ bond，and are linked together by $\mathrm{N}(2 \mathrm{~A}) \mathrm{H} \cdots \mathrm{N}(3 \mathrm{~B})$ and $\mathrm{N}(2 \mathrm{~B}) \mathrm{H} \cdots \mathrm{O}(1 \mathrm{~A}) \mathrm{S}$ hydrogen bonds．Benzene and pyridazine rings make the angles of 89° and 77° for molecules A and B respectively．

INTRODUCTION

The analysis of X －ray crystal structures of sulfanilamide derivatives which usually have antibacterial activities has been undertaken by Professor C．H．Koo et al．Those are sulfapy－ ridine ${ }^{1}$ ，sulfisoxazole ${ }^{2}$ ，sodium sulfisoxazole hexahydrate ${ }^{3}$ ，sulfaguanidine monohydrate ${ }^{4.5}$ ， sulfadiazine ${ }^{6}$ and sulfadimethoxine ${ }^{7}$ ．

The crystal structure determination of sulfa－ methoxy pyridazine（ N^{\prime}－（6－methoxy－3－pyrida－ zinyl）sulfanilamide）has been attempted to com－ pare its molecular structure with those of other
＊이 논문은 1980년도 문교부하ㄴㅜㅜㄹ연구조성비에 의하여 연구뙤였음．
previously determined structures，especially con－ formation of sulfanilamide group，conformation about $\mathrm{S}-\mathrm{N}(2)$ bond and interplanar angle of two aromatic rings．It is also of interest to study the hydrogen bonding systems involving amino and imino hydrogens．

The molecular conformations of two crystallo－ graphically independent molecules in one asym－ metric unit are also compared each other．

EXPERIMENTAL

Transparent colorless crystals elongated along the a axis were obtained by slow evaporation of an acetone solution at room temperature．

Oscillation and Weissenberg photographs in－
dicated the monoclinic space group $P 2_{1} / C$ ．Unit cell parameters were measured from the $h 0 l$ and $h k 0$ Weissenberg photographs calibrated with superimposed NaCl powder pattern as a standard using $\mathrm{CuK} \alpha$ radiation．The crystal density was measured by the flotation method in a mixture of benzene and carbon tetrachlo－ ride．The crystal data are given in Table 1 ．
Intensity data were collected from equi－incli－ nation Weissenberg photographs by use of mul－ tiple film method．The layers from $0 k l$ to $7 k l$ and from $h 0 l$ to $h 1 l$ were recorded．The approxi－ mate sizes of the crystals used for the data collection for the a and b axes were $0.5 \times 0.3 \times$ 0.2 mm and $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$ respectively． The relative intensities were visually estimated by comparison with a calibrated density scale．

The intensities were corrected for spot－shape， Lorentz and polarization effects，and reduced to structure factors without corrections for absorp－ tion．The structure factors for various layers were placed on a common scale by correlating those of the equivalent reflections and then on an absolute scale by Wilson method ${ }^{8}$ ．A total of 2615 observed independent reflections were used in the structure analysis．

The structure was solved by MULTAN pro－ gram ${ }^{9}$ with reflections whose E values are grea－

Table 1．The crystal data of sulfamethoxypyridazine． Sulfamethoxypyridazine， $\mathrm{C}_{41} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ ，M．W．$=280.32$ ．

Unit cell parameters ：
$a=8.70$（2）\AA
$b=11.08$（4）
$c=26.64$（4）
$\beta=100.5 \quad(B)^{\circ}$
Space group ：$P 2_{1} / C$
$Z=8$
Density ：calculated value $; 1.47 \mathrm{~g} \cdot \mathrm{~cm}^{-8}$
measured value ： 1.41
ter than 1．30．The set with the best figure of merit revealed the positions of all 38 non－ hydrogen atoms among the fifty highest peaks on Fourier map．Structure factors based on 38 ． atoms with 2615 reflections gave an initial R of 0.33 ．

The structure was refined by standard least squares method．After six cycles of block－dia－ gonal least squares refinements，the Fourier and difference Fourier syntheses were made to assign four nitrogen atoms in two pyridazine rings，and to locate hydrogen atoms．The ato－ mic species of $N(3), \quad N(4), C(8)$ and $C(9)$ could be readily discerned from comparison of the electron densities．The atoms that had the higher electron densities were assigned as N （3） and N （4）according to the method suggested by Stout and Jensen．${ }^{10}$ The positions of the hydrogen atoms except $\mathrm{H}(\mathrm{N} 1)$ were located on the successive difference Fourier maps；they were included in the further refinements with fixed temperature factors equal to that of atom to which they were attached．Refinements were continued by several cycles of the full－matrix least squares using anisotropic structure factor calculations，and gave R value of 0.085 for all 2615 observed reflections with Hughes weight－ ing scheme ${ }^{\text {in }}$ ．The scattering factors for the sulfur，oxygen，carbon and nitrogen atoms were taken from Cromer and Waber ${ }^{12}$ and those for hydrogen atom were assign by Stewart， Davidson and Simposon．${ }^{13}$ Table 2 gives the final positional and thermal parameters of atoms＊．

RESULTS AND DISCUSSION

The molecular conformation of two indepen－ dent molecules are dipicted in Fig． 1 with a－ tomic numbering．Two molecules are contained in each asymmetric unit and distinguished by
＊Observed and calculated structure factors can be obtained from the authors．

Table 2. Final positional and thermal parameters for sulfamethoxypyridazine. The positional parameters are given as fractional coordinates ($\times 10^{4}$ for the non-hydrogen atoms and $\times 10^{2}$ for hydrogen atoms with the variances of atomic positions $\left(\times 10^{4} \AA\right)$). The anisotropic thermal parameters $\left(\times 10^{4}\right)$ are defined as $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\right.\right.$ $\left.\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)$] For each atom, the parameters are given on the first line for A and on the second for \mathbf{B} molecule respectively.

222

C (3)	153	56	16	-24	1	5		112	87	11	-1	1	-3
	145	171	17	0	9	-22	C (8)	220	52	15	13	15	9
C (4)	133	49	12	3	9	9		236	76	11	23	6	-2
	153	75	12	3	1	-6	C (9)	274	76	11	-3	20	4
C (5)	167	85	15	8	13	-17		237	110	20	36	15	-5
	163	70	19	- 2	8	5	C (10)	235	44	9	-23	4	-3
C (6)	184	51	11	18	-0	-7		171	68	15	24	0	- 1
	143	85	15	-2	5	- 8	C(11)	435	134	17	8	49	-2
c (7)	178	13	13	5	2	-1		197	110	22	7	13	10

Table 3. Least square best planes in sulfamethoxypyridazine. Plape constants with respect to orthogonal axes. L, M, N are direction cosines of the normal in $L X+M Y+N Z-D=0$, where W, Y, X are in \AA.

	$\begin{gathered} \text { Distance from best plane }(\AA) \\ \mathbf{A} \end{gathered}$		Plane constant A B	
Benzene ring plane				
C (1)	-0.01	-0.02		
C (2)	0.01	0.01	A	B
C (3)	-0.01	-0.00		
C (4)	0.00	0.01	$\mathrm{L}=-0.352$	-0.099
C (5)	-0.01	-0.00	$\mathrm{M}=-0.439$	-0.674
C (6)	0.01	0.01	$\mathrm{N}=0.827$	0.732
S	-0.10	-0.01	$\mathrm{D}=6.174$	3. 238
N(1)	-0.04	-0.01		
Pyridarine ring plane				
C(7)	-0.00	0.02		
C (8)	-0.00	-0.00		
C (9)	0.00	-0.00	$\mathrm{L}=0.825$	0.828
C (10)	0.00	-0.01	$\mathrm{M}=0.255$	0.136
N(3)	0.01	-0.02	$\mathrm{N}=0.504$	0.543
N(4)	-0.01	0.02	$D=9.648$	10.007
N(2)	-0.01	0.17		
O(3)	0.03	0.02		

labelling them A and B. The bond lengths and angles are given in Fig. 2. The standard deviations of bond lengths and angles involving sulfur atom have average values of $\pm 0.006 \AA$ and $\pm 0.3^{\circ}$ respectively. The average standard deviations of bond lengths and angles are $\pm 0.01 \AA$ and $\pm 0.6^{\circ}$ respectively, and are not shown separately.
Two benzene rings are planar within experimental error (see Table 3.). The S and $\mathrm{N}(1)$ atoms of A molecule are slightly out of the
benzene plane. The $\mathrm{C}-\mathrm{C}$ bond lengths in the benzene rings vary from 1.35 to $1.40 \AA$ with a mean value of $1.37 \AA$. The $\mathrm{C}(4)-\mathrm{N}(1)$ bond lengths of $1.37 \AA$ for A molecule and $1.36 \AA$ for B molecule, which are significantly shorter than the corresponding normal single bond length of $1.44 \AA$ and in good agreement with the values reported in sulfanilamides ${ }^{1 / \alpha 17}$, show an appreciable amount of double bond character.
Bonding around the sulfur atom is distorted from the ideal tetrahedral. The bond lengths

Table 4. Selected torsion angles (${ }^{\circ}$) in sulfamethoxypyridazine.

	A	B
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(1)$	62.8	140.2
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(2)$	-169.0	6.7
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}-\mathrm{N}(2)$	-46.4	-109.3
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(1)$	-115.7	-43.0
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{S}-\mathrm{O}(2)$	12.5	-176.5
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{S}-\mathrm{N}(2)$	135.1	67.6
$\mathrm{C}(1)-\mathrm{S}-\mathrm{N}(2)-\mathrm{C}(7)$	-66.6	58.5
$\mathrm{~S}-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	-173.3	42.4
$\mathrm{~S}-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{N}(3)$	7.7	-139.4
$\mathrm{~N}(4)-\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)$	-2.0	6.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{C}(11)$	178.0	-177.0

Table 5. Comparison of the conformational angle of $\mathrm{C}(1)-\mathrm{S}-\mathrm{N}(2)-\mathrm{C}(7)$ and the angle between two aromatic rings in related compounds.

	conformational angle about $\mathrm{S}-\mathrm{N}(2)$ bond	angle between two aromatic xings
Sulfamethoxypyridazine		
A	-67	89
B	59	77
Sulfapyridine	-71	84
Sulfaguanidine monohydrate	-76	-
Sulfadiazine	77	76
Sulfadimethoxine	-61	78
Sulfisoxazole	54	69
Sodium sulfisoxazole hexahydrate	73	60
Sulfathiazole*		
$1 A^{23}$	**	101
IB	**	99
II^{24}	80	90
HIIA ${ }^{23}$	78	92
IIIB	76	100

* The thiazole ring is not aromatic. ${ }^{* *}$ The calculation of conformational angle from the reported coordinates does not give any proper value.
with the angles between the two aromatic planar rings in these compounds. As shown in Table 5 , the molecules in these compounds maintain gauche forms with torsion angles in the range
of 54° to 80° and two rings are almost perpendicular to each other with mean interplanar angle of 85°. These differences of the conformation and interplanar angles may be attributed to different hydrogen bonding schemes and different molecular environments in these compounds.

The crystal structure of sulfamethoxypyridazine is shown in Fig. 4. All amino and imino hydrogen atoms are involved in six hydrogen bonds as all donors with distances in the range of 2.82 to $3.21 \AA$ (see Fig. 3). Both N(1) atoms of the amino groups of A and B molecules participate in four hydrogen bonds with oxygen atoms; $\mathrm{N}(1 \mathrm{~A}) \mathrm{H} \cdots \mathrm{O}(1 \mathrm{~A}) \mathrm{a}, \mathrm{N}(1 \mathrm{~A}) \mathrm{H}$. $\cdots \mathrm{O}(3 \mathrm{~B}) \mathrm{b}, \mathrm{N}(1 \mathrm{~B}) \mathrm{H} \cdots \mathrm{O}(\mathrm{IB}) \mathrm{c}$ and $\mathrm{N}(\mathrm{IB}) \mathrm{H} \cdots$ O (2B)a. The molecues A and B are connected each other through two strong hydrogen bonds involving imino hydrogen atoms, one is $\mathrm{N}(2 \mathrm{~A}) \mathrm{H} \cdots \mathrm{N}(3 \mathrm{~B})$ with $\mathrm{N} \cdots \mathrm{N}$ distance of $2.84 \AA$ and the other $\mathrm{N}(2 \mathrm{~B}) \mathrm{H} \cdots \mathrm{O}$ (1A) with $\mathrm{N} \cdots \mathrm{O}$ distance of $2.82 \AA$. The oxygen atom $O(1 A)$ is thus bonded to two different hydrogen bonds with $N(1 A)$ and $N(2 B)$ respectively. Atoms $\mathrm{O}(2 \mathrm{~A}), \mathrm{O}(3 \mathrm{~A}), \mathrm{N}(3 \mathrm{~A})$,

Fig. 3. The hydrogen bonding in sulfamethoxypyridazine. symmetry code : (a) $x-1, y, z$; (b) $x-1$, $y-1, z$; (c) $-x+1, y-0.5,-z+0.5$.

Fig．4．The crystal structure of sulfamethoxypyridazine，origin in the remote lower right comer，a pointing to the left，c up and b forward．The reference molecules（Table 2）are indicated．

Department of Chemistry，Seoul Na－ tional University in which the early portion of the work were carried out．

REFERENCES

1．C．H．Koo and Y．J．Lee，Archives of Pharmacal Research，2， 99 （1979）．
2．C．H．Koo，H．S．Kim，S．I．Cho－ and Y．J．Park，Progress in Chemistry and Chemical Industry，15， 121 （1975）．
3．Y．J．Park and C．H．Koo，J．Korean Chem．Soc．，20， 19 （1976）．
4．C．H．Koo，H．S．Kim，W．Shin and C．Choe，J．Korean Chem．Sac．，18， 97 （1974）．
5．M．Alléume，A．Gulko，F．H． Herbatein，M．Kapon and R．E． March，Acta Cryst．，B32， 669 （1972）．
6．H．S．Shin，G．S．Ihn，H．S．Kim， and C．H．Koo，J．Korean Chem． Soc．，18， 329 （1974）．
7．C．H．Koo，H．S．Kim，Y．K．Yoon and I．Suh，J．Korean Phys．Soc．， 8 ． 37 （1975）．
8．A．J．C．Wilson，Nature，150， 153 （1942）．
9．G．Germain，P．Main and M．M． Woolfson，Acta Cryst．，A27， 368 ． （1971）．
10．G．H．Stout and L．H．Jensen，＂X－Ray Structure Determination＂，P．383，The Macmillan Company， 1968.
11．E．W．Hughes，J．Amer．Chem．Soc．，63， 1737 （1941）．
12．D．T．Cromer and J．T．Waber，Acta Cryst．， 18， 104 （1965）．
13．R．F．Stewart，E．R．Davidson and W．T． Simpson，J．Chem．Phys．，42， 3175 （1965）．
14．B．H．O＇connor and E．N．Maslen，Acta Cryst．， A27， 368 （1971）．
15．A．M．O＇connel and E．N．Maslen，Acta Cryst．， 22． 134 （1967）．
16．M．Alléaume and J．Decap，Acta Cryst．，19， 934 （1965）．
17. M. Alléaume and J. Decap, Acta Cryst., 18, 731 (1965).
18. P. Cuckla and R. W. H. Smith, Acta Cryst., 7. 199 (1954).
19. L. H. Jones, J. N. Shoolery, R. G. Shulman and D. M. Yost, J. Chem. Phys., 18, 990 (1950).
20. V. Schomaker and L. Pauling, J. Amer. Chem. Soc., 61. 1769 (1939).
21. C. J. B. Clews and W. Cochran, Acta Cryst., 1, 4 (1948).
22. C. J. B. Clews and W. Cochran, Acta Cryst., 2, 46 (1949).
23. G. J. Kruger and G. Gafner, Acta Cryst., B28, 272 (1972)
24. G. J. Kruger and G. Gainer, Acta Cryst., B27, 326 (1971).

