황의 친핵성 치환반응 (제13보). 메탄올-아세토니트닐계에서의 파라치환 염화벤젠술포닐의 가용매 분해반응

Nucleophilic Displacement at Sulfur Center (ⅩⅢ). Solvolysis of para-Substituted Benzenesulfonyl Chlorides in MeOH-MeCN Mixtures

  • 이익춘 (인하대학교 이과대학 화학과) ;
  • 구인선 (인하대학교 이과대학 화학과)
  • Ikchoon Lee (Department of Chemistry, Inha University) ;
  • In Sun Koo (Department of Chemistry, Inha University)
  • 발행 : 1981.02.28

초록

$p-CH_3, p-H, p-Cl 및 p-NO_2 기로 치환된 염화벤젠술포닐의 가용매분해반응을 MeOH-MeCN혼합용매계에서 연구하였다. 반응속도는 p-NO_2 > p-CH_3 > p-H > p-Cl의 순위로서 비직선 Hammett관계를 나타내어 S_N1-S_N2경계반응메카니즘으로 반응함을 알았다. 반응성은 모든 경우 약 90∼95% 메탄올용액에서 최대였으나, fi = \frac{k1}{ki}로 정의되는 각 기질의 메탄올 단위체 선택성(monomer selectivity)은 80% 메탄올 용액에서 최대이며, 그 크기 순위는 p-NO_2 > p-Cl > p-H > p-CH_3$로서 전이상태 구조가 tight할 수록 fi값이 크며 메탄올 단위체를 예민하게 선별 감지함을 알 수 있었다

Solvolysis of $p-CH_3, p-H, p-Cl and p-NO_2$-benzenesulfonyl chlorides have heen studied in MeOH-MeCN mixtures. A nonlinear Hammett plot with a ratio order of p-NO_2 > p-CH_3 > p-H > p-Cl was obtained; the reaction was thought to proceed by an S_N1-S_N2 borderline mechanism. In all cases the reactivity was a maximum at 90∼95%(v) methanol, whereas methanol monomer selectivity defined as fi = \frac{k1}{ki}i (k1; observed pseudo-first order rate constant: ki; hypothetical rate constant for MeOH solution having the same polymer structure as in the pure MeOH) was a maximum at 80% methanol with a decreasing order of fi as p-NO_2 > p-Cl > p-H > p-CH_3.$ This was interpreted as the decrease in tightness of transition state; the larger the fi, the tighter is the MeOH attached to the substrate, and hence the more susceptible the substrate becomes to the approaching monomer methanol.

키워드

참고문헌

  1. J. Amer. Chem. Soc. v.92 W. A. Pryor;K. Smith
  2. J. Korean Chem. Soc. v.18 I. Lee;W. K. Kim
  3. J. Chem. Soc. no.B O. Rogne
  4. J. Korean Chem. Soc. v.24 H. W. Lee;S. La;I. Lee
  5. Handbook of Chemistry and Physics(59th Edition) Robert C. Weast(ed.)
  6. J. Korean Chem. Soc. v.22 I. Lee;W. K. Kim
  7. Phil. Mag. v.2 E. A. Guggenheim
  8. J. Chem. Soc. D. A. Brown;R. F. Hudson
  9. J. Korean Chem. v.23 I. Lee;K. B. Ryu;B. C. Lee
  10. The PMO theory of Org. Chem. M. J. S. Dewar;R. C. Dougherty
  11. Frontier Orbitals and Org. Chem. Reactions I. Fleming
  12. Topics in Curr. Chem. v.70 Structural Theory of Org. Chem. N. D. Epiotis;W. R. Cherry;S. Shaik;R. L. Yate;F. Bernardi
  13. Bull. Chem. Soc. Japan. v.42 K. Fukui;H. Fugimoto
  14. J. Chem. Phys. v.13 H. S. Frank;M. W. Evans
  15. J. C. S. Perkin II. R. W. Taft;M. J. Kamlet
  16. J. Amer. Chem. Soc. v.70 no.119 C. G. Swain;C. B. Scott
  17. J. Amer. Chem. Soc. v.73 C. G. Swain;C. B. Scott
  18. J. Amer. Chem. Soc. v.77 C. G. Swain;C. B. Scott
  19. J. C. S. Perkin II. Y. Karton;A. Pross