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Abstract

In both continuous-review and periodic-review non-stationary inventory systems, the non-
stationary Poisson demand process and the associated inventory position processes were proved
being mutually independent of each other, which lead to the probability distribution of the
corresponding net inventory position process in the form of a finite product sum of those
two process distributions. It is also discussed how these results can correspond to analytical
stochastic inventory cost function formulations in terms of the probability distributions of

the processes.
1. Introduction

Inventory systems are operated largely based on some operating policies concerning review
systems and ordering rules. The so-called transactions-reporting (continuous-review) systems
and periodic-review systems are commonly used for inventory system review.

In both inventory systems the inventory position {IP,; >0} totally depends upon the
demand process {N,; t>0}. Therefore, once it is verified that {IP,.,} and {Dy.,, )}, where
Doy, n=N;—N,_, for a lead time #>>0, are mutually independent of each other, the analysis
of net inventory process {NIS;; t>0} will become straightforward, from which the cost pro-
cess can be immediately derived whose average one may seek. The net inventory process is
defined as NIS,=IP;.,—Dg.,, o

The primary objective of this study is to prove that {IP,.; ¢t—u>0} and {D.,, .} are
mutually independent of each other, even in the case of non-standard inventory models with
non-stationary Poisson demand processes.

Among references, only the inventory position process associated with stationary Poisson
demand process has been specified in Hadley and Whitin (1).

2. Proof of Mutual Independence

From the point of view of the mathematical theory of probability a stochastic process is
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best defined as a famility {X(#); t&T} of random variables, where the parameter set T is
called the index set of the process.

When demands arrive at time points £y, £, <+ , (0<¢,<t,), the successive inter-arrival times
{X;31>1} are defined as X,=if;, X,=&,—1;, «reoee s Xn=ly—lpegy overe . Let N, be cumulative
demand by time ¢, £=0. Then {N,; >0} is a discrete-valued continuous-parameter stochastic
process with sample paths increasing in unit steps.

An inventory position [P, at time ¢ totally depends upon the demand process {D,; t<T}).

If an inventory system is started with JP,=r+i(f=1, 2, -« , @) at time ¢t=0, then IP,_,
=r+j (j=1, 2, =eee-- , @) at time {—7z>0 can be reached after the (i—j)* or {{+ (m—1)@+ @
—f)sm=1, 2, coeeer } demand materialization by time {—z, where m denotes the total number

of order placements by time ¢~z and
(f—j)*=max{o, i—j}.

Suppose now that we consider the sequnce of events consisting of the times at which an
order in the amount of @ is placed and received in the constant lead time 7. Defining Y, to
be the time elapsed between the (k—1)* and A** orders, the sequence of random variables
{Yis k=1, 2, «eee+- } forms a modified renewal process in which the distribution functions are
given by

P{Y ,<w} =P{S,-_<_y1}EF;(y1)=P{Ny,2i},
{=the initial stock over the reorder point r.
where ( S;=the renewal epoch of the /** demand and so equal to ﬁ}X 4
k=1
F;(-) =the n-fold convolution of the identical distribution F of {X;},

and likewise,
P{Y <y} =P{Se<yi} =P{N,,>Q} =Fo(y;), for k=2, 3, +eer: ,
since {¥; <yi} == {(Sivconro—Siraone) <)
== {Se<y,;} for k=2, 8, --re,
Thus, a new renewal process {W,; m=0, 1, 2------} is defined such that
W,=Y,=0

m
Wm=k;lyk=3i+(m-l)Qy m=ls 29 85 0 v s

where “m=(" means that no order is placed yet.

Let (¢—r—6) and m be, respectively, particular values of the time 7 and the serial num-
ber M of the last order placed no later than f—z. If we assume that JP,_..=r+j(j=1, 2, -+
<+, Q) at time ¢—rz, then we see that (@—s) demands are further needed in the time interval
(t—7—0, t—1), for >0, since the inventory position at time f—zr—6 is r+@ immediately
after the mt* order is placed at time t—7—8.,

Let Z,_. be the time from ¢—z until the first demand subsequent to #—z, that is,

Zir=SN_+1-(t—1),
where
SNy, <t—7<SNtmr + 1.

The variable Z,_. will be the residual or excess waiting time at epoch ¢{—z. Then, the dis-

tribution function of Z,., can be determined by use of the renewal equation for m(t) =E{N}.
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Furthermore, let t—z+Z be the time point at which the first demand occurs after time
t—r. Then, the random variable Z,_, may have a different distribution from those of X;'s.
However, the distribution of D,,.., ,; is determined by partitioning in accordance with the
time ¢t—r+Z at which the first demand occurs after the time :—z and the time interval
(t—t+Z, t] in which 4—1 demands occur. For the explicit form of the distribution of {Z,_..}
and {D_., .1}, refer to Sung [2].

From the preceding discussions we can see that P{IP,_.=x} is a function of P{N,_.=y],
which means the inventory position IP,_.. is determined by N,_,. Thereby, we shall prove
that given IP,=r+i(f=1, 2, «ore+* , @) at time t=0, for non-stationary Poisson demand process,
the distribution of IP,.. is independent of that of D, ,;, even though D_, ,;=N,—N,_..

Theorem 2.1.
For the continuous-review <@ ,7) inventory system with backorders allowed, constant lead
time 7>0, demands occurring in accord with a non-stationary Poisson process with finite

mean, and with JP,=r+i(f=1, 2, «+eee , Q).
P{IPi;=1+j, Dyr, n=k} =P{IP\_;=r+j}P{Dar-s, n=A),
for j=1, 2, «+eev ,@and £=0, 1, 2, e .
Proof:

P{IP,_,=7'+J-, Dy... t]=k}
=5 [ PUP.=r 4, Dacws w=kiM=m, T=t——01d$, (T <t~c~0)

Zo) oo
[P{Npor=({—7)s Ny\—N,_.=k} "+
B L2 [ PN~ Niees =@, Ne=No, =k M=m, T=t—5~0) -dP{W,,,<t—z-—0}}
where, P{N,_,=({—j), N;.—N,_.=k}*=0 if :</.
(P{N;..=(—~j), Ny— Ny, =k} "+
B _éj::"P{N,_,—N,_,_,=Q— iy Ni—=No_.=F) dP{W,,,<t~z'—¢9}J
[T PNwe= (=), No=Nio=hlZe = 2}*-dP(Z,, <2} + )

=| & (9=t—-v(Z=7 .
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P{Nt“f=(l'__j>’ Nt—rzk—1}+'dP{Zc_f§Z}+ }
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© Ote=T
PWeee= =Y+ 5 [ PIN,=Q—j} -dP{Wn<i—7—06)
: E:P{N,-Zﬂe—l} -dP{(Z.,<Z)
=P{1Pt-r=r+j}'P{D(t—rgt]=k}
from the result of the distributions of {/P;_.} and {D..,,;} derived in Sung (2.
~. The proof is complete.
The above analysis can be directly cited for the periodic-review inventory models, @, 7,
T> and <R, r, T). Recall that under both models an order is placed at a review time T, (k=
0, 1, 2, wovee- ,) if and only if the inventory position 7Py, of the system is less than or equal

to r. Therefore, the exactly same procedure treated in the proof of Theorem 2.1 will give

rise to the next theorem.

Theorem 2.2
For the periodic-review inventory systems of {#Q, », T)> and (R, », T> with the same re-
strictions placed in Theorem 2.1 and £>0,
P{IPr,=r+j, Da,, e} =P{UPpr,=r+/} P{Da,, risei=m},
for m, k=0, 1, 2, «+ro+ ,and j=1, 2, ooeee » @(R—r for <R, r, T)).

3. Deriving Limit Distribution of Net Inventory Position Processes
In view of the system analysis discussed in Introduction, it is defined that for <@, r>
Systems,
NIS,=IP,_.—Dq._.,, for t2720
=0H,—BO,
and so
NIS,=0H,, if NIS,>0
=B0,, otherwige.
Furthermore, from the result of Theorem 2.1,

Q .
P{NISt:r_I_S}=ZP{1Pt—r=r+j’ D(t-r,t]=j—s}+r
j=1
for s=@Q, Q—1, -seeer y 0, —1, 2, eoeree,
Q
=§1P{1Pt_,=r+j}P{D“_,, a=j—s}*
i=

where
P{Dyer, n=j=5} ' =P{Dyer, n=j—s}, if j=s
=0 , otherwise.
Now, consider the distribution of IP,.., processes. Under the assuming conditions discussed

in Theorem 2.1, it follows that

P{N,=n)=P(S,<t—7} ~P{Spn<t—r}, n=1, 2, »+=++ ,

=Fs,(t—1) = Fsp, ((—7)

_J.‘-f —me-n_{M{s~7)}"! . {”"‘7";55“7)} 7 (s—7)ds,

= e

0 (n—1)!
where



m(t) =E{N,}
d
7 () =—m(®)
cmgen AME=TN"
fs,(t—t)em4™ (i—=1)! 7(t—1).

This relation indicates that as long as the so-called mean value function m(¢) associated
with N, processes is identified, the corresponding limit distribution of IP,..(or IPr,) can be
easily determined,

For #Q, r, T> and <R, r, T) systems, such derivations can be made regarding the follow-
ing relations;

NISTk+e=IPTk—D(Tk, Tree] =0HT}1e—BOT4e.

4, Conclusion

It is clear that the discussions in section 2 can directly lead to some analytical cost model
constructions of related stochastic inventory systems <@, 7d, #@Q, r, T> and <R, », T) with
demands occurring in accord with a non-stationary Poisson process, having finite mean, in
terms of the probability distributions OH, and BO,.

Therefore, for the implementation of this work the only thing to do is stochastically to
«characterize the mean value functions of demand processes under real non-stationary circum-
stances,

Finally, recall that this study was restricted to the inventory systems having non-stationary
Poisson demand processes. However, the subject associated with more general demand pro-
cesses is still open to question.

REFERENCES

1. Hadley, G. and Whitin, T.M., Analysis of Inventory Systems, Prentice-Hall, Englewood
Cliffs, New Jersey, 1963.

2. Sung, C.S., Analysis of Nonstationary Inventory Systems, Ph. D. Thesis, Iowa State Uni-
versity, Ames, Iowa, 1978,



