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Abstract

This paper approximates to a kernel density estimate ty a truncated series of expansion inv-
olving Hermite polynomials, since this could ease the computational burden involved in the kernel-
based demsity estimation. However, this truncated series may give negative values particularly
near the tails of distribution, or may give a multimodal estimate when we are estimating unim-
odal density. In this paper we will show a way to insure the truncated series to be positive and
unimodal so that the approximation to a kernel density estimator would be meaningful.

1. Introduction

It is very interesting to find that when we expand the nonparametric kernel density
estimator of Parzen (1962) with the standard normal kernel, we obtain an infinite series
of expansion involving the sample moments and the usual Hermite polynomials. The
sum of a finite number of terms of this series may then be used to approximate the
kernel density estimator. This seems a potentially useful device for easing the compu-
tational burden involved in the kernel-based density estimation. However, care would have
to be taken that the approximation afforded by the truncation is satisfactory since the
sum of a finite number of terms of the series may give negative values particularly
near the tails, may behave badly in the sense that the sum of %2 terms may give a
worse fit than the sum of (—1) terms, or may give a multimodal density estimator
when true density is unimodal. See examples in Specht (1971).

The parallel with Barton and Dennis (1952) may then be exploited to define positive
and unimodal regions for the approximated (truncated) kernel density estimator so that
we may assess positivity and unimodality of the approximated estimator by checking
where the approximated estimator lies relative to these regions. In Barton and Dennis
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(1952) the positivity and unimodality regions for the Gram-Charlier and the Edgeworth
series estimator involving the first four known moments were plotted in the two dimen-
sional space of (8, 8:) where 8,=p?/ps®, and fy= ./ 1’

In this paper it is proposed to assess unimodality and positivity of the approximated
density estimator by seeing where the estimate lies relative to the regions plotted in
the two dimensional space of (8, 82) =(M:2/M;3, M,/M?). for example, when the
truncated series involves only the first four sample moments, M,, M,, M,, and M,.

2. The Series Expansion of the Kernel Density Estimator.

In an attempt to investigate whether an unknown denisty is unimodal or not, it
seems to be natural to examine the first derivative of a nonparametric kernel density
estimator of Parzen (1962).

Let X, X,, ---, X be #n independent and identically distributed random variables whose
common density f(x) is continuous, but unknown. Parzen(1962) proposed the nonpar-
ametric kernel density estimator f.(x) of the form,
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where x is a point of estimation, {4.} is a suitably chosen sequence of positive num
bers, and K (-) is a symmetric, nonnegative kernel (weight) function such that Jm K@

du=1. Here in this note, we use the standard normal kernel,
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Using (2) in (1) we obtain
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Now substituting the identity,
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where Mk’:%‘i X+, the kth sample moment.

3. The Positivity and Unimodality Regions of f,.(x).

In practical application one makes use of only the first four sample moments from
which the estimates of the mean, variance, skewness, and kurtosis are obtained. This
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is especially true since the sampling variances of moments higher than the fourth are
large, and furthermore it is true that often, the sum of k terms may give a worse fit
than the sum of (k—1) terms in the expansion. Hence, here we shall limit our
attention to the series expansion of f,(x) in (4) with the terms involving only the first
m sample moments. Therefore the resulting expansion will be as follows :

Y N
f,.(x)z-—:/_z%—he ) [+ 500 B )] O
where bk’=%

Now replacing M.’ in (5) by the moments about the sample mean
L= % (=M,

(5) becomes
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where b}z:_‘k!hnk .

Hence, the condition —‘if—")fx—)zo is equivalent to the condition that
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since —;;—H{Txn—]—ka_l[ ;ﬂ ]:Hm[ ]Z ], and the condition _gd—%,;c(zi) £0 is equiv-
alent to the condition that
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by the virtue of the identity that
H,,.,.=H,H,—2kH H,_,+k(k—1)H,_,
for the Hermite polynomials.
Conseqgently, by (7) and (8), the unimodality region is given parametrically by
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Now for the positivity region of the truncated series, note that f.(x) of (5) will be
nonnegative if the quantity,

[1+§‘bk’Hh(; )]50 for all x. (10)

If we consider (b,, b, -, b.'") as a point in m dimensional space, then the relation
(10) implies that (b, by, ++-, b.") lies on the same side as (0,0,+:-,0), and by proceed-
ing parallel with Barton and Dennis (1952) we will find that the positivity region
of f.(x) is given by points (&', b, ---, ba') on the surface defined parametrically by
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Solution loci for the two parametric equations (9) and (11) may then be plotted to
give the regions of unimodality and positivity, respectively, of the truncated series of
the kernel density estimator. In particular, if m=4 the parametric equations (9) and
(11) replacing M.'by M, like in (6) will involve only the three sample moments M,, M,,
and M, and we may therefore plot two dimensional regions of unimodality and positiv-
ity of f.(x) in (6) on the (8,, B2) = (M?/ M3, M,/ M,?) plane by proceeding parallel with
Barton and Dennis (1952).

The regions of Barton and Dennis (1952) were replotted by Draper and Tierney (19
72) by a nonlinear least square fitting subroutine, which had an advantage of being
extendable to more complicatd cases when more terms are added in the approximation,
that is, when m>4 in (9) and (11).

We note here that the regions in our case will depend on choice of the sequence
{h.}, the “smoothing parameter” for the kernel density estimator.

4. Concluding Remarks.

From a practical viewpoint, the important consideration is not whether an infinite
series of the kernel density estimate can satisfactorily estimate a density function,
but whether the sum of a finite number of terms can also satisfactorily approximate an
unknown density. The regions of unimodality and positivity in the truncated series of
the kernel density estimator, in this sense, should be of great importance in density
estimation in order to determine the range of x over which the approximation will be
meaningful.

In Specht (1971), an example plotted of the truncated series in terms of the Hermite
polynomials gave a substantial amount of negative values for the density estimator near
the left hand tail of the normal density. It could also be noted in Specht (1971) that a
truncated estimator gave a multimodal estimator when it was estimating a normal
density function.

The finite series may be successful in cases of moderate skewness. For a value of
(81, B2) distant from that of the normal density (0,3), the approximation may very
well be negative at least for some part of x. For many statistical purposes we are
often interested in the tails of a distribution, and it is here that such inadequacies
occur. The regions of positivity and unimodality we consider here may come in handy
when such inadequacies are serious.

5. Some Further Work.

As a further work, such regions for unimodality and positivity with various choice
of the smoothing parameter {/.} in kernel-based density estimation, should actually be
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plotted.
With such a trucation in the “orthogonal series” density estimators such as in Tarter

and Kronmal (1968), we would not expect f.(x¥) to be nonnegative for all x. Conseq-
uently, a similar method of insuring positivity, or unimodality should be proposed for
many orthogonal series density estimators available in density estimation.
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