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Stability of Asymmetric Shaft Carrying two

Discs with Limited Power

Bo-suk Yanc*

This paper presents a study of stability of the two mass rotor with limited power similar o that

employved by Kononenko and also presents a study on the digital computer to obtain the unstable

region of the roior over two critical speed ranges.

The unsiable rzgion is identified by studying the Routh-Hurwitz criterion of the characteristic

equation.

The results are presented in two and three-dimensional diagrams to show how the various

parameters affect the unstable region.

Introduction

In many of high speed rotors (gas turbine,
auxiliery power machinery, compressor, turbo-
generator etc.), the design operating speed is
often beyond the rotor first critical speed and
under these circumstances the problem of insu-
ring that the machine will perform with a stable
low-level amplitude of vibration is often diff-
icult to achieve.

The study of rotor dynamics has become of
increasing importance in the design of power
system in recent yvears.

This is due in part to the increased demand

for reliable machine performance and variable

operating conditions. Rotor dynamics consists

s

of the study of the following major areas of
concern.
1. critical speed analysis.
2. methods of calculating the residual unba-
lance.
3. steady state and transient response to unba-

lance.

4. stability analysis of rotor.

In advanced models, where stiffrness asymm-
etry of the shaft is included, periodic coeffici-
ents appear in the equations of motion and inst-
ability speed ranges occur due to these periodic
coefficients.

Solution of such equations are obtained by
either the Hill method based on Floquet theory
or the pertubation-variation method outlined by
Hsu?»2),

Recent investigation such as Messzl and Bon-
thron?, Tondle%,

have shown.

Kononenko® and others®?

Iwatsubo® have studied a problem of param-
etric resonance of asymmetric rotor system.

Yamamoto and Ota® dezlt with a simple rotor
system composed of one shaft and disk, in which
the asymmetry of rotational inertia, shaft stiff-
ness were combined.

These investigations have not been trezted
the stability of asymmetric shaft carrying two
discs with limited power cystematically.

In previous works!®, the author has treated
nonstationary vibration characteristics of asym-
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metric shaft carrying two discs during passing
through its critical speeds.

This paper presents an analytic study of
stability of the rotor with limit power which
employed at previous paper and also presents
the study performed on the digital computer to
obtain the stability region of the rotor over two

critical speeds.

Nomenclature

O-zyz: fixed rectangular coordinate system

%1, Y1, %2, ¥;: coordinate of gravitational cen-
ter of the rotor

my, m,: mass of the discs

I: moment of inertia of the rotor

€11, €12, €2 stiffness of the shaft

2de1s, 24¢12, 2 ez, difference between maximum

and minimum values of ¢,,, €13, €32

Cery Cea: coefficients of the external damping
Cii, Cizt coefficients of the internal damping
71, 720 eccentricity of the discs

¢: revolution angle of the rotor

#: angle between », and s,

©1,2: first and second critical speed

M—S¢: driving torque

Equation of Motjon

Fig. 1 illustrates the mathmatjcal model of the
flexible rotor system.

The shaft, carrying two discs with eccentric-
ities r; and 7, rotates with angular velocity 4.

The external damping forces are assumed to
be proportional to the velocity of the center of
the discs, while the internal damping forces are
assumed to be proportional to the velocity of
the bending deformation of the shaft.

The equations of motion of the rotor are
derivable from the potential, kinetic and dissip~
ation energy functions and use of Lagrange’s
€quation..

The detail derivation was described in Appe-~

ndix of previous paper!® and the final equations
are;
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Fig.1. A asymmetric shaft carrying two discs,
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Stability Analysis

To study the stability of the stationary moti-
ons of the first and second resonance, we carry
out derivation of the approximate solution and
averaging operation of eq.(1) by the method of
Bogoliubov’s perturbation theoryin.
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The resultant equations are

GE= @B ZE et (buort
bw)A;+£Bj}

G (0mod A= (aet - (boi+bie)
Bi—kAy)

do

G =8/ (L(0) +b1o(A2 4+ B2 (0i— )+,

(Aisin 8—BicosB) —2A4;Bik+34c,,
sidiBiy (i=1, 2)

where

2
wi‘m~Cqy
si= S p=m, ts7m,
C1z

b= ki+di+s2(k,+d,)

b= dy+s:2d,

an= me,+sime; cosB

aj,= Simye,sinf

k= Aen+24c1:8i+ Acapsi?

dy= e1(eqy+5:¢12) +e3(c1p +5ic35) cos 8
diy= ez(C1z+5isz)Si"1,flﬁ

A= G2(bnwitb,8)e’—a ko2 — 2,0, 100 (0—w;)
! B — (61,0 81,0 )2 (2w (w0 —e;) I

B.— —a1(b110; +b,0)w? 4 @15k0? — 24,007 (0—w;)
' k2 —(b110; +-b100 Y2 — (200, (0 —w;) 2

This method has the advantage that the diff-
erential equations are linear with constant coe-

fficients, so that the problem of stability reduces
2o the Routh-Hurwitz criterion for eq. (2).
Eq.(2) are written as

dA;
ar =¢1(A,', B,', )

dB;

—75 =04, B, @)
dw .
T=<I>3(A,-, Bi, o) (i=1, 2)cceeinnnnnn. 3

where the function ®,, &, ®; represent the
Tight-hand sides of eq. (2).
Ai=a; 48, Bi=bi+M, w=wytLioeeere 4)
2, b, w, are values of A4;, B;,, «; for the
stationary motion, i.e., roots of the following
«equation.

¢’,‘(d,‘, b;, wo)=0 (l:l, 2)

G=1, 2, 3) e (5)
£ i, §: are small perturbations of the quan-

tities A;, B;, o from their values for the statio-

mary motion.

Substituting eq. (4) into eq. (3) and expanding
the expression obtained in a series of powers of
the small quantities &, 7, &; taking only linear

terms of the expansion,

&N by b by &
il = by by b, “v-
g VT 0 bee b |

......... (6)
:: l"beu bsz [)33J ’\Ci
The matrix of coefficients of these equation is
/) a a
Y AU AL
biv =12 @, 9o 2
Ik Id ,'CDZ 3y aBiq)z s aw‘bz
a a a
. — y —D
LaA.—'DJ’ B o) (D
Then, the characteristic equation of the rotor
system is
MAEBATLBA4+B=0 coeeieeeeneeinnn, 8
where

By=—(bu+by+b23)
By=b11b20+b2ob33+-bashys—bysby—bashgy—by1b1s
By=by:b23b50+b12b21b33 +by3b31855 —by1basby— b12b23bs;

— 13021032
by=— Zro; (brwi+b0)
Ek
b= (“’—“’i)"i‘m‘i‘

&
biz=B;+ S (2a1,0—0124))

Ek
ba= oDt e
&
br= T ome (bnwi+-b10)
&
by3= —Ai~m (2a10+56::B)

by = % {261, 4i(0i—w) —dysinf—Bi(2k—
deiosid}

b= - (2b13Bi(wi—w) -+ +dyz cos 3— A
(2k— Acizsi)}

b= —o- { e L(w)—bra(A+BD)

The necessary and sufficient condition for the
stationary motion to be stable is that the char-
acteristic equation has roots which are real and

negative.
Bn>0, B3>0, Ble'—BJ>0 ............... fg)

Discussion of Results

Numerical examples illustrating the analviical
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Fig.2. Unstable region near o, due to stiffness
asymmetry and driving source.

developments are shown in Fig.2—6.

It is clear that the first condition of stability
B, >0 is always satisfied for an energy source
characteristics which is falling d/de L{w)<0.

In Fig.2, the unstable region in the vicinity
of the first critical speed narrows with the
increzsing of gradient of driving torque.

The unstable region widens with the increa-
sing of shaft asymmetry.

If the shaft asymmetiry is large, a mnarrower
stable region appears in the vicinity of the
critical speeds.

Similarly, Fig.3 shows unstable region in the
vicinity of the second critical speed.

Since the interaction of driving torque and
resisting torque appear clearly, unstable region
gets wider than that in Fig. 2.

The effect of eccentricity near o, are shown
in Fig. 4,

In case of B;B,—B;>0, the unstable region

exists in the vicinity of the critical sp}eed, not
depending on the amount of eccentricity and
damping coefficient.

In case of B;>0,

increases, unstable region increases and then

when damping coefficient
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Fig.3. Unstable region near w, due to stiffn-
ess asymmetry and driving source.
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Fig.4. The effect of eccentricity near wy(ra=7)-

becomes nearly ccnstant, disregarding increa-
sing of eccentricity.

Fig.5 shows the characteristics of the driving.
torque for ByB,—B;>0.

Unstable region increases only with shaft
asymmetry, disregarding the characteristics of
the driving torque.

Fig.6(a), (b) shows the effect of phase for
B;>0, B;B,—B;>0.

For B;>>0, if damping coefficient increases,
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Fig.5. The effect of characteristics of the
driving driving torque(B;B;— B;>0).

minimum unstable region moves from =/4 to 2%
(0°), while maximum unstable region appears at
#. For BiB,—B,>0,
appears at 0.57 and 1.5=.

maximum unstable region

Conclusions

The dynamics of the rotor system with shaft
asymmetry carrying two discs have been studied
with various factors.

It can be seen that the criteria of stability
depends on the shaft asymmetry and the chara-
cteristics of the driving torque L().

Damping force decreases unstable region cau-
sed by shaft asymmetry, but increases unstable
region caused by driving torque, and self-
excited vibration are likely to occur with it.

Angle between eccentricities were found to
have a great importance on the trend of the

unstable region.
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