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Abstract

This paper deals with two quantization systems with a stochastic refernce and gives the unified

statistical properties of the two systems. The conditions are derive: ror the invariance of the output

quantized signal with respect to the input signal for the two systems and it is shown that they are same.

The correlation function estimation by a polarity method using stochastic reference signals is

shown to be a special case of the general properties derived here.

We have also shown that the classical stochastic computing is derived from the general properties

of the first system and that L.G. Roberts has used a special characteristic of the general properties of

the second system in his image processing.

I. Introduction

Generally the quantization system is used for the
digital signal processing. The quantization system
used most frequently is a uniform quantizer. As far
as concerned with a quantizer, one cannot avoid a
quantization noise. Generally the quantization
noise has a bad effect upon the quality of image or

speech because of its dependence on the input signal
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of quantizer.[” [221(27]

A special case of a general quantizer, one bit
quantizer, has been used for a long time for the cor-
relation function estimation, [31[4] Generally it is
very difficult to obtain the correlation function of an
arbitrary signal. But the correlation function of the
output of an one-bit quantizer can be found easily.
Because the output of an one bit quantizer is consisted
of the 0 or 1 in the logical sense. It is necessary to
have only some shift registers, some AND gates and
some counters for the correlation function of the
output. For the correlation function of the input,

one must use a inversion formula between the cor-
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relation functions of the input and the output.la] (31

Especially one bit quantizer with a stochastic
reference was used for the estimation of correlation
function because of the unbiased output.[sl[sl[”
In this case, the output correlation function is the
same as the input correlation function. Therefore
it is not necessary to use a inversion formula.

KE-YEN CHANG et al, have considered one bit
quantizer with a stochastic reference for the cor-
relation function under the name of the modified
digital correlator. They proved that the correlation
function estimation of the quantized signals is equal
to the true correlation function for arbitrary inputs
under the use of a stochastic reference signal with
CASTANIE F. has realized

a correlator using a stochastic reference and con-

some special conditions.

sidered the performance. (111321 ge also used a
stochastic reference for the spectral analysis.[”] (14]
In the other part, S. T. RIBEIRO has proposed a new
type of the computing machines using stochastically
coded signals.[m] In his paper, he has used the fact
that the continuous variable is proportional to a
probability of a pulse occurrence at a certain sampling
time when the continuous variable is coded sto-
chastically using one bit quantizer with a stochastic
reference. After him, much has been studied in this
domain, [151-120]

In 1962, L. G. Roberts has considered a uniform
quantizer with a stochastic refcrence (so-called
“dither), which has been subtracted from the
quantized signal at the output (we call it system 2).
He has used this system for picture coding.[l]

L. SCHUCHMAN has derived the conditions
that a dither signal must meet so that the quantizer
noise can be considered independent of the signal.[Z]
After L.G. Roberts, many people have studied the
effect of dither on the quantized visual signals and on
the quantized speech signals. [21]-128]

S.S. AN has derived the second order characteristic
of dither which gives the optimum signal to noise
ratio after a lowpass filter connected to the output of
L.G. Robert’s system (System 2 of Fig. 2).[3°]

But in spite of the similarity of the two systems,
they have not been analyzed theoretically in the

unified views.
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In this paper we analyzed the two systems and
derived gencral properties from which it is shown that
the conditions for the invariance of the output quan-
tized signal with respect to the input signal for the two
systems are same. u we have shown that the
correlation function cstimation by a polarity method
using a stochastic reference signal is a special case of
the general properties derived here. It is also shown
that the classical stochastic computing is derived from
the general properties of System 1 and that L.G.
Roberts has used a special characteristic of the general
properties of System 2 in his image processing. (See
Sec Il and II)

In Sec 1V, we discuss the general properties derived
and suggest further applications.

The proofs of the properties are given in Appendix.

II. Statistical properties of quantizer with a stochastic

reference

The two systems we have investigated are shown
in Fig, 2.
System 1 is that used in St. Ribero’s paper (101
in the case of one bit quantizer. There, he has applied
that system to make a stochastically coded signal for
an arbitrary input signal, and he has used that signal
to do addition, multiplication, etc. (This computing
method is called a stochastic computing.)

This will be restated in Sec. II1.

System [ has been also used in image proces-

(22,231 gystem 2 is often used in low bit rate

sing.
PCM or in image processing because of its smoothing
effect with respect to quantization noise.

Up to now, in spite of many people’s research, the
properties for the two systems were stated dispersedly
and only partly. In some papers[l'Z] , the first order
characteristics were only considered. From these one
can not derive the second order characteristics from
which comes the concept of frequency. In some
others,[27'28] only the qualitative effects of dither
were investigated. Here we have presented for the two
systems the unified statistical properties which contain
some new properties and some known properties. We
think that all the statistical properties can be derived
from the equations presented here as far as concerned

with the two systems. (The applications of the equa-
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tions are considercd in Sec Il and Scc IV.)

The quantizer characteristic is given in Fig. 1,
which shows a uniform quantizer. (Onc can show
that the benefits with a stochastic reference come
from both a uniform quantization characteristic and
a characteristic ot stochastic reference.)

The main cquations which give general propertics
are conditional characteristic functions of the output
of the quantizer and of the quantization noisc. and
conditional moments of thosc. In Table 1, we have
summarized conditional characteristic functions of
Y (1), ntt) and yet) for given a(1), conditional moment,
ete. where n(1) is the quantization noisc. (We call
these properties first order propertics) In Table 2,
joint conditional characteristic functions arc sum-
marized in addition to conditional moments, cte.
(These will be called second order propertics.)

The proofs of these equations are in Appendix.

To ftacilitate the comprchension of the tables,
we give definitions and short explanations of the

notations used.

Definitions and Short explanations

x(t) ; Input signal of the quantizer (Sce [ig. 2)

d(t) ; Stochastic reference (See Fig. 2)

n(t) ; Quantization noisc (Sce Fig. 2)

Y (t), y(t) : Output signals lor cach system (See Iig. 2)
I‘Y(wlx) ul Ii(c-iwyy\') : Conditional characteristic fen.

of Y for given x.
i'd (w) 2 I{(cj‘*’d) ; Characteristic fen of d(1)

I'n (wix) 2 l{(c-'“mlx) : Conditional characteristic fen.
of n for given x.

E(Y1x) ; Conditional expectation of 'Y for given x.
LS(m) : 1d(@ (T5) < 0 Tor q =0, 1, =+, mand k # 0

where l‘d(q) (";) mcans qth order derivative of

ak

I'dw) at w = s

. This condition constrains the

statistical properties which a stochastic reference
can have.

. N +jw, Yy .
UY(wy, walsg v 2 BT TI92 55 40 1 Joint
conditional characteristic ten. of Y(). Y(s) for
civen x(1), x(s).

Pd(w,, wy) 2 }..(ciwldl + juwgpdg) : Joint characteristic

fen. of d(t), d(s).

'n (wy,walxg,xg) & E(ej“‘)lnt * J"‘Jznsixt,xs) ; Joint
conditional characteristic fen. of n(t), n(s) for
given x(t), x(s)

Ls (mn) 5 rd P ety 6 for p = 0,1, 400, m
andq =0, 1, »+-,nandk, 1 # 0.

This condition constrains the statistical properties
which a stochastic reference can have,

sinc (x) 2 sin ax/nx

w 2 2af ; In Table 1 and 2 we have used both w and

f for the simplicity of notations.

v
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Fig. 1. Characteristic function of the quantizer, Q.
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Fig 2. Two systems investigated.
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Table 1. First order properties.

System 1

System 2

Conditional characteristic fcns. of
Y(t), n(t) for given x(t)

Conditional characteristic fens. of
y(1), n(t) for given x(t)

.k \ .
= Ee]’gxt Id(-w+1%k) sinc 26(f—2%)

M '
I_‘Y (wixy) ) fy (wixy)
. hid . K
=2 %@ =5 et dncase-K = pel*t(w ‘35) R sinc2s(r - Ky
K & 28 k & 25
¥ @'
[p (wIxy) Ty (wixy)

-k
= 3 e Xt I8y i _k
ie 5 d(B)smc26(f 25)

Conditional expectation of moments of
Y(t), n(t) under d(t} e LS(m)

Conditional expectation of moments of
y(t), n(t) under d(t) ¢ L.S(0)

'

3) (3)

E(Y¢ 1xp) E(y¢ " 1xg)

. i i i
mm-i m! 8 q, . m-i-q = m+
= r ——it— — EW = e
120 q=0 ilqlmi)! i+ @ x 2 MATe .
1:even 1. even

@ @'

E(n™x) E(ng"xe)

i m
P A8 pgmei - -8 .
_ifomCli+1E(d ) i:even el m : even

Conditional expectation of first,

second order moments

Conditional expectation of first,

second order moments

($)
E(Y¢ixp) = x¢+E@dy)

2
E(Y¢ 1x0 = x¢® +2E(@pxe+ Edy) + 55

'

(5)
E(ytixe) = x¢

. 52
E (y¢21xp) = x¢* + Ky

6)
E(nt|x¢) = E(dt)

2
Enéixp) = E@d) +%5

'

(6)
E(n¢|x¢) =0

52
E(n¢? Ixy) =g

Remark :

For the first order properties, the most general
properties are Egs. (1), (1), (2), (2)',. Because Egs.
3), (3), (4), 9’ can be derived from them (see
Appendix). As one can see, Egs. (5), (5)', (6), (6)
are the special cases of Egs. (3), (3), @), (4)". If we
are concerned with the quantization noise power only,
the most remarkable difference between the two
systems can be found from Eqs. (6) and (6)'.

Under the condition of d(t) e LS(2), the quantiza-
tion noise power of System 1 is always larger than that
of System 2. (The condition of LS(2) implies LS(0)
by the definition.)

But System 2 is more complex than System 1 be-
cause of the substraction of the stochastic reference
at the output of the quantizer. Generally to circum-
vent that difficulty of System 2, one use a pseudo-

random noise as a stochastic reference.[1]

_47‘
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Table 2. Second order properties.

Joint conditional characteristic fcns, of
Y(1), Y(s), n(t), n(s)

Joint conditional characteristic fcns. of

¥(t), y(s), n(t), n(s)

(@]
Ty (v ,walxt, xg)

. ky _. 1
= 5 Bl =F) ~xslwT0)
k,1

P07 oy ¥ sine 25 (- Jsine 26 (T3

'

(@)
Ty (w wzlxt, Xg)

< g AT —ixgar- D x
k1

ra, ™ ysine 2811, —;?)sinc (%)

®)

f:n(wl,wzlxt, Xg)

kol
<z o NGNS
k1

TGy +7K oK )sine 25 (€ —a)sine 25(f3-55)

.

(8
TplwywalXy, Xg)
. wk 1
k,1

Lok Mheine 285~ )sine 25 (£33

Conditional expectation of moments
under the condition d(1) e LS(m, n)

Conditional expectation of moments
under the condition d(t) ¢ LS(0, 0)

)
m mi n ah
EY{ ™Y k%) = £ E L X
i=0 q=0 h=0 r=0
m!n! &i+h

ilq!(m-i-q)h!rl(n-h-r)! G+1)(h+1)

’

&)
m n
EGvi™y "% %) = = E
i=0 h=0
m!n! 6i+h

il(m-D!hi(n-h)! (i+1)(h+1)

E( dtq dsr) Xtm-i-q xsn-h—r Xtm-i xsn-h
)___‘ i, h : even i,h:even
ao (10
E(n¢™ngIx¢, x) = i=§(; hEZO E(n"ng"ixy, xg)
ot e _ ™
i(m-D!h!(n-h)! (i+1)(h+1) s (m+1)(n+1)
i, h: even m, n:even

Expectation of first or second order moments

(1)
E(YYsixt, xg) = x¢xg + E(dg)xy

+ E(dx + E(ddg)
E(Y¢® Ysixt, Xg) = xt* xg + E(dgx¢* + 2E(dg)X¢Xg
2
+ 2Wdedgxg +55 x + 2 B(dy + BA)xs

+ E(dtz dg)

Expectation of first or second

order moments

an’
E(ytysixt, Xg) = XtXs

62
E(y¢* ysiXts Xg) = X¢" g +3Xg

12)
E(n¢ngixy, x9) = E(dydg)

E(n¢ nglxt, xg) = E(d¢ dg) +%5 E(dy

ay'
E(nmg) =0, E(ng*ng) =0

E(n'ng’) =25
9




19814 41 P I4@z S 188 H2H

One can see that the second order properties are
the generalization of the first order properties. But
the significance of each order properties is totally
different.
frequency does not come from the first order proper-

Because the concept of correlation or

ties. (Of course, to give a frequency (or spectrum)
concept, one must have a condition of stationarity
in addition to the second order properties given here.
The properties of (1), (1), (2),(2), (7), (7) (8), (8)',
were derived without any constraint. S.S. An[3°] has
further considered System 2 under the condition
that the input is a first order Markov and stationary

process.)

III. Application of the derived equations

As some applications of results of previous section,
we consider threc cases. They are the stochastic
computing, the digital correlator and the dither in

speech or image coding.

[1] Stochastic Computing

The stochastic computing is the method of com-
puting (for example, addition, multiplication. etc.)
using one bit quantizer with a stochastic refer-
ence.[10-20) (with a stochastic computer, one can
do addition, multiplication, integration like an analog
computer using digital circuits.)

I'rom kEq. (5) of Table 1, we see

E(Yyxg = x¢+ Edp (13)
under the condition of
rd c”;‘) =0 for k#0 (14)

This is the cssential formula for the stochastic
computing. Eq. (13) was derived from the multilevel
uniform quantizer with a stochastic reference. There-
fore it is also well suited for a one bit quantizer with
a stochastic reference if the input signal x(1) is
restricted to [-6, 8] and the stochastic reference d(t)
satisfies the conditions (14) and d(t) ¢ [-5.5].

One of the stochastic references satisfying these
conditions is the uniformly distributed one.

In this case, Eq.(13) becomes

E(Y¢lxp = Xy (15)

Eq. (15) shows that the conditional expectation of
the output of one bit quantizer is the input signal.
The stochastic computing considered by S.T. Ribeiro
used this fact, [10]

In the other part, from Eq. (6) with the uniformly
distributed stochastic reference

E(nglxy) = 0 (16)

Eq. (16) shows that the conditional mean of quan-
tization noise is independent of the input x¢ and
that it equals zero. This is a very important result
because generally without the stochastic reference,
the quantization noise is dependent on the input

(291 verified that the uniform-

signal x(t). F. Castanie
ly distributed stochastic reference signal bounded by
t5 and satisfying the condition of (14) gives the
minimum varjance of quantization noise. In general,
the benefits of the stochastic computing come from

the simplicity of the computing elements.[10:15:19,

201 o example, a multiplication needs only one
AND gate.
Here wc have shown that stochastic computing

is a special case of Svstem 1.

[2] Digital Correlator

For a long time, the correlation function estima-
tion method using the polarity coincidence is well
known. 31 1311

One can calculate the correlation function of x(t)
from that of y(t) in the system of Fig. 3. This system
was used because of the calculation simplicity in y(t)
as stated in Sce. I.

The mathematical analysis for the correlation

X[t} it

Fig. 3.  One-bit quantizer.
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function estimation by a polarity method using
stochastic reference signals was donc by H. Berndt! 7]
and others[8'29] but by different ways.

Consider the Eq. (11) of System 1,

E(Y{Yglxp.x= ¥t¥s ¥ E(ddxt + E(dpxg+ E(dedg)
(17
Eq. (17) was derived under the condition of
LS(0, 0),

ak wl - g 18
rd (% %) =0 for ki=#0 (18)

If E(dg) = E(didg) = 0 with the condition (18),
we obtain from Eq. (17)

E(Y {Ygixt,xg) = XtXs 19)

Eq. (19) means that the correlation function can
be derived from the output of quantizer with a stoch-
astic reference and that the output correlation is the
input correlation itself. If one use one bit quantizer
with a stochastic reference, it becomes the digital

(71

correlator of H. Berndt It is seen that the condi-

tion I'd, (%k) = Td; 15 = 0 for kJ # 0 of Ke-Yeng

Chang et all81>

case of Eq. (18).

s modified digital correlator is a special

The merit of digital correlator is in the simplicity
of circuits. One can say that the digital correlator is

a special case of stochastic computing.

[3] Stochastic references in speech and image coding

The first use of a stochastic reference signal in
image processing was in the L.G Roberts Papcru]
because of its smoothing cffect with respect to the
quantization noise. After him, the stochastic refer-
ence signals were also used in low-bit rate PCM sys-
tems.127-28)

The essential benefits of using stochastic refer-
ences come from Eqgs. (5)’ and (6)' of System 2, that

is,

(t

E(yyxt) = x¢ (20)

li

E(l’ltl.\'t) D

62
E(ngéixy) = 3 (22)
under the condition
Td (" = 0 for k%0 (23)

[:q. (20) means that the conditional expectation of
the output of System 2 is equal to the input and
Eqs. (21), (22) mean that the expectation of quantiza-
tion noise is cqual to zero and that the quantization
noise power is equal to 6; and independent of the
input signal.  The independence of quantization
noise to the input signal is very important for the
quality of the image or the speech waveform for low-
bit rate PCM.[1:22:27:28,30) 14 11y of the System

2 shows that under the condition,

rd (-nk ml

. 2Ly=0 for k1£0

(24)
the correlation function of the input signal is pre-
served at the output of System 2, that is

E(yysixe,xg) = Xixg (25)

Eq. (25) shows that one can compute the correla-
tion function at the output of System 2. But the
simplicity of circuits does not come from System 2
likc System 1, that is, one cannot use the benefits of
one bit quantizer. As another application of previous
results, S.S. AnE3% has used Eq. (7)' of System 2 to
compute the optimal second order characteristic of
the stochastic reference which gives the minimum
noise after the low-pass filter attached io the output
of System 2 under the condition that the input

signal is first order Markov and stationary process.

IV, DISCUSSION

At Sec I, we have shown how the formulae are
applied in many domains. But we have not discussed
the similarity between the two systems. First we
remark the similarity of the characteristic functions of
the two systems. This significs the behaviours of the
two systems are very similar. We can see this fact

from the conditions, Eq. (14), Eq. (18) of System 1

—_ 50 -
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and Eq. (23), Eq. (24) of System 2. That is, as far as
we are concerned with the first and second order
moment, the conditions to give the invariance of the
input signal at the output of each system are equal.
(Here ‘invariance’ means that the input characteristic
is preserved at the output.)

From Egs. (6) and (6)' of Table 1, the quantiza-
tion noise power of System 1 is always larger than that
of System 2. In the case of the uniformly distributed
dither over the quantization step, one can easily verify
that the quantization noise power ratio of the two
systems is equal to 2.

Consider again Eq. (25). Eq. (25) shows that the
correlation of the input is preserved at the output.
This is a very important point in image processing or
speech processing because it means that the spectrum
of the input is preserved at the output in the respect
of probability.

As far as conce:~2d with higher order moments,
one must use Egs. (3), (3)', (4), (4), (9), (9)" and (10),
(10)'. (For example, in the case of the estimation of

an arbitrary function).

One can see that the mth order moment of quan-
tization noise is independent of the input signal with
the condition of d(t) ¢ LS(m) for System 1 from Eq.
(4). But for Systemn 2, any order moment of quan-
tization noise is independent of the input signal with
d(t) €LS(0) from Eq. (4)'. That is, for System 1, the
condition of the independence of quantization noise
upon the input is changing with higher order moments.

But for System 2, it is constant, that is, d(t) e
LS(0) with any order moments. For the second
order properties one can derive the same conclusion
from Eqgs. (10) and (10)'. As far as concerned with
higher order moments, this is the main difference
between the two systems.

In the case of without the conditions of d(t) e
LS(m) and d(t) e LS(m,n), one must directly attack
Egs. (1), (1), (2) ', (D), (D', (8), (8)’. In this case
it is very difficult to manipulate these equations[3°].

The simplest stochastic reference satisfying the
condition of LS(m) is the m+1 times convolution of
a uniformly distributed one. In this case, the char-

acteristic function of this is

rd(w) = (sinc 26H™*1 (26)

where w = 2nf.

One can easily verify that Eq. (26) satisfied the
condition of LS(m). A little more general one is
produced from Eq. (26), that is

rdw) = (sinc 26H)™ ! Gy e%))

where G(w) is a characteristic fcn. of an arbitrary
probability desntiy and w = 2x#f.

But it is very difficult to discuss the general class
of probability density functions satisfying the condi
tion of LS(m) as well as LS{m,n).

V. Conclusion

Two quantization systems with a stochastic refer-
ence have been analyzed. Main formulae that char-
acterize the output signal and the quantization noise
were derived.

From these formulae it was shown that the classical
stochastic computing is a special case of one of the
two quantization systems with a stochastic reference,
that is, the system using one bit quantizer with a
stochastic reference. The correlation function estima-
tion by a polarity method using a stochastic reference
signal is also shown to be a special case of the same
system.

It was also shown that one can compute the cor-
relation function at the output of the quantizer sys-
tem, which was considered by L.G. Roberts.

The conditions to give the invariance of the first
and second moment of the input signal at the output
of each system were given and they are shown to be

same for the two systems considered.

Appendix

Here we prove only Eqs. (1), (2), (3), 4), (5), (&
of System 1. The proofs of the rest formulae are
very long but the method of proof is very similar. 1301

(a) Proof of (1) and (2)
At System 1, Yy = x¢ + nt, where ny is quantization

noise. Therefore,
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P (Y =2k§|x) = P ((2k-1)8-x <d < (2k+1)6-%)
= Py(n-b < d < td)

where we omitted the subscribts and n = Y-x.
The conditional characteristic function of Y4 is

Ty(wix) £ E[e-ij|x]
2= e3Y pyvi ay

-z fm edwY jn+5 P4(m)dm §(x+n-2ké)dn

= 39X [ ¢ 8 eI py(man)dm b (x+n-2ke)dn
K

- 6 po° 4
=xe Jx( 2§ 71N pg(m+n) 5 (x+n-2ks)dndm

-j2ké w
]); j' 5 Pq(2ks-x+m)dm
-5 oi2k6w [ZPq(2ke-x+m) I  dm
k S <m<é

1 for -6<m<$§

where I
0 otherwise

5 <m<é

a definition and j =</ -1
Here applying the Parseval theorem, we obtain

Py(wix) = zei2kow [ = o X-jw 2k
k -00

Fd(w')25sinc 26'df’
=[e j“”"(Ee'j2k6 (@) rg(uy28sine 285 df’
= ej“"x(ismf’-z% ) Td(w)sinc25'df’
gt AT Fd(<o™) sinc2s Ky (AD)

where w £ 2nf.
Eq. (Al) is Eq.(1). To obtain Eq. (5), we use

Trn@x 2 Ee ™M)
=g WY HieX

=eij fy(wlx) (A2)

Using Eq. (Al) and Eq. (A2), we derive Eq. (2).

and “ £ means

(b) Proof of (3), (4), (5), (6)

"EcY™

=0 5 "
=355 WX =

=3 1{1 mci(sm(éw—ﬂk) i) )
k i=0 Bu-mk w=o

m-i (q)
C r (x)m- - 9, i (A3)
{q 0 q'a ( ) _]X) 5 }

Suppose that

r‘d(q)(]%l_(_)=0forq=0,1,--- ,mandk # 0 (A4)

i1

v,(l),,, for i:even
(sindc slnﬁw (i) i+l : (AS)
L‘J—O { 0 for i: odd
where j = J:i .
ra@g) = (§)9E(aY (A6)

with Eq. (A3), Eq. (A4), Eq. (A5) and Eq(A6),

m m-i,

E(lex)— )i) L mclml q 1+1 L(dq)xm-l-q

- o 1__HL__6~ s (qdy M
20 oo lal(mig! # Ed x

i:even

With the condition (A4), this is Eq. (3). From this,

one can derive Eq. (5). Eq. (4) can be easily derived

by the same method from Eq.(2). Eq.(6)isa special

case of Eq. (4).
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