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Abstract

The problem of incomplet state feedback began to appear late in 60’s and early in 70°s.
This was motivated by inability to measure all the states of the system in practice. This
survey paper traces the early developments in the subject through to the most recent achi-
evement of gain-determining, pole-assignment, stabilization, and low sensitivity system

design with output feedback.

I. Introduction

Frequently the designer of controllers for linear
system does not have a complete set of state
variables directly available for feedback purposes.
Moreover, he may wish to generate the control
variables directly ' by taking linear combinations
of the available output variables instead of first
reconstructing the state via a Kalman Filter or
a Luenberger Observer®, At first the Optimal
gain, like in optimal control theory with complete
state-feedback, was obtained by minimizing the
appropriately chosen cost functional. Because the
cost functional depends upon the initial state, a
lot of method was proposed to eliminate the
dependence on the initial state® @@, Later #
other methods were presented to choose the gain,
e.g. by error minimization®®, by maximizing an
impulse response correlation matrix®® and by
approximation of the closed-loop system thransfer
function to the ideal model transfer function®?,
and the extension was made to the sampled data

system©®,
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With the problem of gain-choosing, the prob-
lem of pole-assignment was studied by many wor-
kers. The early work of Davisen®®® about the
number of assignable poles was developed and
extended and the necessary and sufficient condi-
tion for arbitrary assignment of all of the system
poles was sought®®~“#, Since many theorems of
the pole-assignment told about the number of
assignable poles and their properties a lot, but
nothing about the other poles, they might be
impractical when the problem of stabilization
was considered. So along with the enthusiastic
studies about the pole-assighment the problem of
stabilization by output feedback attracted many
people’s attention®?~¢®, As in recent years consi-
derable interest grew in reducing the sensitivity
of the optimal linear regulator to parameter var-
iations, the problem of deriving low-sensitivity
feedback controller for linear systems with in-

complete state feedback is considered also.

II. Determination of the Optimal
Constant Quiput Feedback Gains

In optimal control theory, all the state varia-
bles of the plant must be aviailable for feedback
as required by the optimal control law. The linear
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regulator problem with complete state feedback
can be stated as follows. The plant equation is
given in state variable form

i=Az+Bu y=Cz z(0)=x, 2
The optimal feedback control law minimizing
the quadratic performance index

J=J':(fox+uTRu)dt (2—-2)

is
(2—3)
However it is usually difficult to measure every

u=—kx

state in practice. This problem has traditionally
been a serious restriction on the practical applic-
ability of optimal control theory.

Knowing this drawback in optimal control the-
ory, a lot of effort has been made to control the
system with only available states, or incomplete
state feedback.

Levine and Athans®, and Levine, Johnson and
Athans® derived a necessary condition for the
optimal constant output feedback gains. Instead

of the optimal control strategy of, (2—3), they
used the optimal control law
u=—Fy=—Fcx 2—4)

with the same performance index (2—2). But sim-
ple calculations show the performance index —2)
with (2—4) depends upon the initial states. So to
eliminate the dependence upon the initial state the
performance index was averaged treating the
initial state z, as a uniformly distributed random
vector. And the new cost functional was obtained.

JR)=L{er [Ter (A+CFRFCI™ dt o}
(2—5)
where
A=A—BFC
Then the problem of gaining the optimal control
law becomes that of parameter optimization, so

(2—6)

the following theorem.
Theorem II-I
Any matrix which minimizes (2—5) also satis-
fies the matrix integral equations
Fx=R\B'K*L*C'(CL¥C’)™ (2—7)

where

K*=f:e‘*" (Q+C F¥RF*Cle**” dT  (2—8)

—_921 —

Lé=["erz e do (2—9)

A*=A-BF*C @2—10)
Alternatively assuming that K*, L* and F* are
solutions of (2-7)-(2-10) the K* is also a positive-

definite solution of

O=K*A*+ A¥K*¥+Q+C'I'* RF*C -1
and L* is a positive definite solution of
O=L*A¥ 4+ A*L*+z, (2—12)

They also gave a computational algorithm for
solving the above equations by iteration, but not
satisfiable.

Knapp and Basuthakur® derived the above nec-
essary condition using an alternate and mechanic-
ally simpler approach which has greatly simplified
developments in a related problem involving out-
put feedback with parameter uncertainty. Also
another derivation of theorem II-I was made by
Mendel®?, which is applicable to other limited
state feedback controller design problem as well.
And Hutcheson®’ made the same try with a sim-
ple direct method.

Solving the above output feedback problem(2—
1), (2—2) and (2—4) gives an expression of the

performance index as

J=x K*zo=tr (K*z .2z’ ) (2—13)

where K* is the symmetric positive definite golu-
tion of the lyapunov matrix equation(2—11).

The dependence of J on the initial state is und-
esirable since inital conditions are not usually
known a priori. In order to alleviate this diffic-
ulty, several approaches have been taken. Levine
and Athans®:¢ treated z, as a uniformly distri-
buted random vector, whereas Man®® used the
maximum eigenvalue of K* in place of J and
Dabke!™ used the Euclidean norm of K* as an
upper bound on the maximum eigenvalue. A set
of performance measures that are independent of
initial conditions may be defined by observing
that the performance index in (2—13) is a quad-
ratic form in the space of initial states. So Zohdy
and Aplevich® showed a generalized measure
defined on the eigenvalue of K* can be employed
in place of J
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V(K*) =('§:;lx5)% —tr (KRS (2—14)

where 4; is an eigenvalue of K*. Itis readily seen
that
Vi(K*)=tr(K*)
}iglVAK*):max (Ay=2n

(2—15)
(2—16)

Along with the effort of deriving the necessary
condition, many workers tried to solve the given
necessary condition. Horisberger and Belanger®
solved the problem by developing simple for-
mulae for the gradient matrix and using the
Fletcher-Powell-Davidon algorithm on the basis
of the existence theorem of the optimal gain given
by Horisberger®®. It was found that the first
computational algorithms for the solution sugges
ted in (1) and (2) cannot guarantee satisfactory
results, particularly in the cases when the num-
ber of outputs is much smaller than the order
of the system. It is caused by the inability to
find an adequate initial guess when solving the
associated system of algebraic matrix equations.
So Bingulac, Cuk aad Calocic®®? proposed a new
computational algorithm providing an initial gue-
ss, by solving a sequence of output-constrained
regulator problems, starting from the solution of
a full state-feedback regulator. The solution of
each preceeding control problem 1is used as an
initial guess for the next one, where the number
of output variables is reduced by 1. The last
control problem in the sequence represents the
specified output-constrained regulator. But know-
ing the rather supplementary calculations invol-
ved in the above method, Petkovski and Rakict®
gave another computational algorithm for finding
an initial guess with the use of minimum error
excitation criteria presented by Kosut“®. Several
iterative techniques proposed for finding the op-
timal F requires an initial guess of F that stabil-
izes the closed-loop system. However, the case
when the open-loop system is unstable makes
the initial guess difficult and forces one to resort
to an auxiliary stabilization algorithm. Fully un-
derstanding this situation Choi and Sirisena®*’ dev-
eloped an alternative algorithm which requires
only a stabilizing state feedback law to initialize
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the search,

Since the early work of Levine and Athans®»
@ most of the papers were confined to continu-
ous time case. Yahagi®® extended this problem
First he derived the

corresponding state equations and performance

to sampled-data systems.

index as follows.
z((E+1D T =a(Tz(k T)+ o T)ulkt)
yET)=Czx(kT), wlk T)=—Fy(kT)

(2—17)
(2—18)

Ji= T_,:f':,x’(k T)Lz(k T)+u'(k T)Mz(k T)

L R TIMuk T)+u' ETYWu(kT)  (2—19)
where
«(A T)=exp(A TA) (2—20)
SAT)= f j’a(r) BdT (2—21)
L:ﬂa'(z T) Qa(AT) di (2—22)
sz:B’(z TIQBUAT)d (2—23)
W:f:[ﬁ(l T)QBAT)+R) di (2—24)

And in this case he derived the necessary condi-
tion for the optimal output feedback gain in
three equations which are quite similar to conti-
nuous version. Also in the same paper he obtained
the optimal gain in a different way. Subtracting
the state x which is obtained from complete
state-feedback from the state z whizh is obtained

from incomplete state-fesdback he made a new

equation
e=i—i=[A—BK) e+B(FC—K)z
e(0)=0 (2—25)
Letting
v=(—FC+K)z (2—26)
then
é=(A—BKJe+Bv (2—27)

with an intention to minimize the trajectory

error driving function with the cost function
L=t Put)dt (2—28)

he derived a necessary condition for the optimal
feedback gain in terms of three equations. Here
also, this technique was extended to sampled
data system.

Apart from the many works mentioned prev-
iously the optimal gain was obtained by using

impulse response or transfer function. Subbayyan
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and Vaithilingan®® approached the problem with
an approximation of the impulse response of the
closed-loop system with incomplete state feedback
to the optimal closed-loop system with complete
state feedback. So they tried to solve the problem
by maximizing an impulse response correlation
index given below
.5

I.R.C.——-’J(—g-%;)’—ié—,—gﬂ

where g* is the impulse response of the optimal

(2—29)

closed-loop and g is the impulse response with
incomplee state feedback. T.C. Hsia®” tackled
the problem in the frequency domain. His appro-
ach is based on the approximation of the closed-
loop system transfer function to the ideal model
transfer function. The closed loop transfer funct-
ion can be written as

GHs)= 1{*8 =C(sI-A+BK)™" B

_ s ltaistansit ot as” B
4 L1+ Bis+ o524+ 4 fps” n>m  (2—30)
and
* Y*(s) i
Ri5)=—2*6) _oeor— 1
(=) =CLsI~A+BK)" B
o ltostansitee da,s™ (3

T I Hys Sttty
where G* (s) is the transfer function with com-
plete state-feedback, and G(s) is the transfer
function with incomplete state feedback. It is
noted that the two transfer functions have the
same numerator polynomials. The feedback gain
K is selected such that

G*Jo) . G(jw)

ST g

the approximation in (2—32) can be best carried

(2—32)

out by applying the magnitude criterion<®

GHia)f |*q 9—33
Glwg @5
Substituting (2—30) and (2—31), (2—33) becomes
1+y15+y252+"'+y,,3,‘ 2 =1 (2_34)

14 Bist Bt ot Bus” Is=jo

But his work is limited to single variable case so
it needs to be extended to the multivariable case.
Using only the outputs of the system has its
outstanding merit that no observers or no deriv-
ative actions are needed, but because we use only
a part of all the informations about the system,
the control possibility is limited. So extending

— 293 —

the output feedtack problem to the optimal PI
or PID controller design in continuous and discr-
ete systems, we can have a better control over
the system.

Most of the chemical processes have time del-
ays. And this fact makes the control more diff-
icult. In these time delay systems the controller
design by output feedtack, PI or PID action

remains challenging.

III. On Pole-Assignment

Since the fundamental result was presented by
WonhamV, the problem of pole assignment has
received much attention and has been expected to
bridge the gap between classical and modern
control theory. The result of (21) states that, if
the system is controllable it is pole-assignable,
that is, the eigenvalues (the poles} of the closed-
loop system can be assigned arbitrarily by select-
ing an appopriate state feedback. Since the com-
plete state observation which was assumed in (21)
is unlikely to most practical situations. It has
been desirable to find the condition under which
the system is pole-assignable with incomplete
state observation. If some dynamic elements are
allowed in the feedback loop, the elegant result
of Brasch and Pearson®® gives an answer to this
question. Another approach has been the one us-
ing the Luenberger observer®® or the Kalman
filtere»,

In 1970 Davison®? appeared with his early
work on pole-assignment with output feedback
with the following system

Z=Axz-+Bu

y=Cxzx 3—-1)
where y is an p-dimensional output vector, x is
an n-dimensional state vector, # is an m-dimensio-
nal input vector, and A, B, and C are constant
matrices of appropriate size and he proved theo-

rem which said

Theorem III-1

Consider the system given by (3—1). If (4,B)
are controllable, if C has rank p<# and if A has
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eigenvalues that are distinct or are repeated such
that the eigenvalues of each Jordan block of the
Jordan cononical form of A are distinct, then a
linear feedback of the output variables

u=—Fy (3—2)
where F is a constant gain matrix, can always
be found so that p eigenvalue of the closed-loop
matrix A—BFC are arbitrarily close (but not
necessarily equal) to p preassigned values, where
the preassigned values are chosen so that any
complex numbers appearing do so in complex
conjugate pairs.

He also gave an algorithm for finding output
feedback gain F. The above theorem makes cert-
ain assumptions regarding the Jordan cannonical
structure of A, which holds iff A is a cyclic ma-
trix. This assumption can be removed by using the
results of (22). By making a further assumption
on the observability, Davison and Chatterjee®®

obtained the following theorem.
Theorem III-2.

Consider the system given by (3—1). If the
triple (C,A,B) is complete (i.e., (C,A) observable,
(A, B) contralloble) and if C has rank p<z and B
has rank m<#, then a linear feedback of the out-
put variables
(3—3)

where F is a constant gain matrix can always be

u=—Fy

found so that max (p,m) eigenvalues of the clo-
sed-loop matrix-loop matrix A—BFC are arbitrarily
close (buy not necessarily equal) to max (p,m)
preassigned values, where the preassigned values
are chosen as in Theorem III-1.

Sridhar and Lindorff®®*” gave an alternate proof
of Davison’s theorem on pole placement and sho-
wed that in some cases, more than max (p,m)
poles can be assigned arbitrarily. In (28) they obt-
ained the same result asin (27) and assuming the
system is output stabilizable, gave a least square
design technique to approximate the desired pole
locations when it is not possible to place all the
poles.

When the order of the system n is large, how-
ever, the algorithm in(25) may run into numerical
difficulties due to the illconditioning of a matrix
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which must be inverted. So Davison and Chow¢v
presented a modification of the algorithm which
avoids this problem, and so allowing large systems
(#>>10) to be considered. Their algorithm consists
of two parts. In the first part, a feedback gain
matrix F* is found so that the closed-loop system
matrix (A—BF* C) has distinct eigenvalues (this
implies that the closed-loop system matrix beco-
mes cyclic). In the second part, a feedback gain
matrix F, is found so that the closed-loop system
matrix (A—BF* C— BF,C) has eigenvalues arbitra-
rily close to some preassigned values. The requi-
F=F*4F,
Davison and Wang®® considered the poleplaeme

red gain matrix becomes, therefore,

nt problem and extended the early works having
the following theorem

Theorem III-3

Given (C,A,B) controllable and observable with
A=Rr*n rank B=m, rank C=p, then for almost
all (B,C) pairs, there exists an output gain matrix
F so that A—BFC has min (», m+p—1) eigenv-
alues assigned arbitrarily close to min (», m+p—
1) specified symmetric eigenvalues.

The above theorem implies in particular, that
almost every linear time-invariant, multivariable
system can be stabilized by using only output
feedback provided m+p>n+1

Antsaklis and Wolovich®® showed that the
rank of an appropriately defined real matrix Q
represents an upper bound on the number of
closedloop poles which can be completely and
arbitrarily assigned via constant gain output feed-
back and the observability index of an appropri-
ately defined single-input system represents a
measure of the order of dynamic compensation
which is required for complete and arbitrary pole
placement

Different from the conventional approachusing
the characteristic equation, with an approach
based on the properties of the eigenspaces of
the closed-loop dynamics, Kimura®’ showed if
the system is controllable and observable and if
n<m--p—2, an almost arbitrary set of distinct
closed-loop poles is assignable by constant gain
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output feedback and moreover the minimum order
of the dynamic compensator required for almost
arbitrary pole assignment.

Kimura, again®> faced the problem with a
purely geometrical approach. He showed that pole
assignability is strongly connected to the structu-
ral properties of systems in state space with the
basic idea of connecting the concept of control-
1ability subspace with the subspace which repre-
sents the set of all candidates for closed-loop
eigenvectors. So he gained a result which says
arbitrary pole assignment is possible for almost
all systems if z<m+p+y—1, p>g, m>v where
» and g are the so-called controllability index and
the observability index of the system, respectiv-
ely. And in (37) Vardulakis, also, derived a suffic-
jent condition for n-specified eigenvalues to be
assigned under constant output feedback.

Munro and Vardulakis®” presented a simple
test given in analytic matrix terms which pro-
vides both necessary and sufficient condition for
arbitrary assignment of all of the system poles
using only constant output feedback. With state
feedback gain K the closed-loop dynamic equation
with complete state feedback is

i=(A—BK)z (3—4)

and the following theorem is given

Theorem III-4

A necessary and sufficient condition for all of
the poles of a complete system described by (3-
1) to be arbitrarily assigned using constant ouput
feedback is that at least one of the set of state-
feedback matrices K, which achieves the same
pole assignment, and one of the g:-inverses of C
satisfy the consistency relationship

KCHC=K (3—5)

Using co-ordinate transform, Patel®® derived
the necessary and sufficient condition condition of
arbitrary placement of the » poles and gave a
method to find the corresponding output feedback
gain.

The above problem was considered and exten-
ded by Munro®®, He showed the necessary and

sufficient condition for an output feedback solu-

— 25—

tion to exist is equivalent to conditions imposed
by the controllability and observability indices
of the given system. He revealed that the desired
closed-loop eigenvalue but also be chosen such
T that the pair (Ac,B) has the same controllability
indices as the pair (4,B). It was also shown that
for an output feedback solution to exist, Ac must
in addition be chosen such that the pair (A¢,C)
has the same observability
(4,0)
Seraji®", also gave a necessary and sufficient
condition and algorithm for the same problem.
Seraji“® dealt with the same problem of the
unattainability of certain closed-loop pole positi-
ons in single-input multi-output systemes with
constant feedback. He showed that there are two
classes of unattainable pole positions which are

indices as the pair

unattainable individually and those which are un-
attainable simultaneously. The individually unat-
tainable pole positions are identified as the loca-
tions of common zeros of the open-loop system,
and a set of simultaneously unattainable pole
positions results in linearly dependent rcws in a
certain matrix.

Vardulakis®® investigated the problem associ-
ated with the allowable s-plane regions for the
closed-loop system poles under constant output
feedback. It was shown that under certain con-
ditions result which can be seen as a natural
extension of the classical root-locus ideas can be
obtained.

i=Azx+Bu
y=Cx+Du (3—6)
In the pole-assignment problem mentioned pr-
eviously, the matrix D was eliminated. Seraji“®
considered the problem of pole-placement in the
general case where there is direct transmission
from input to cutput with a control law
u=V-—-Fy (3-7)
We have closed-loop dynamic equation as follow
#=(A—BF(I+DF)"'C) x
+(B—BF(I+DF)D)v
y=(I+DF)'Cz+(I+DF) 'Dv (3—8)
Let’s define the constant mxp matrix P as
P=F{I+DF)™! (3—10)
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Then eqn (3—8) becomes
2=(A—BPC)x+(B—VPD)v
Using the existing methods,

(3—11)
a matrix P can be
found which assigns the eigenvalues of A—BPC.
Once P is found the required output feedback
matrix F is obtained by solving eqn (3—10) as

F=p(I+DF) (3—12)
or

F=(I-PD)'P (3—13)
where the inverse matix exists in general.

Furthermore Chammas and Leondes“* consid-
ered the problem of pole assignment by piecewise
constant output feedback for linear time-invari-
ant systems with infrequent observation. An
algorithm for computing the output feedback
gain was presented, together with necessary and
sufficient conditions for pole assignment. The
resultant output feedback gain is a periodic pie-
cewise constant function of time, that takes at
most (#—m) different values, which leads to an
output feedback control law that can be easily
implemented on line.

In cases when proportional ouput feedback
alone fails to satisfy the poleassignment problem,
controller with proportional-plus-derivative out-
put feedback is found to be wuseful. Seraji and
Tarokh®® and Paraskevopoulous®® investigated
this problem, but a very little is known. So the
same questions, e.g., the number gnd position of
assignable poles, necessary and sufficient condition
for arbitrary pole-placement and frequency dom-
ain implication as in the constant output feedba-
ckcase still remains to be answered.

If even with the above type controller, arbitr-
ary pole-assignment cannot be achieved, the
controller of higher order can be considered. And
in this case the controller of least order will be
desirable. So designing the compensator of least
order can be an interesting problem.

IV. On Output Feedback Stabilization

Stabilization of high-order system by constant
state feedback of dynamic output feedback canbe
impractical from the viewpoint of measurement
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of the compensator device. So the method which
stabilizes the system with the output that can
be measured easily by constant gain has been
studied. In the pole-placement problem of section
I11, the subject of arbitrarily assigning the num--
ber of poles which are determined by the chara-
cteristics of the system was considered, but we:
had no control over the other poles. So these:
results may be of no use in the problem of sta-
bilization. Therefore output feedback stabilization
which locates all the system poles in the left half
plane of complex frequency plane needs to be:
considered.

The fact that the uncontrollable mode and
unobservable mode cannot be changed by output
feedback was known by Jameson®® and Nandi
and Herzog®®, so the condition that the uncon-
trollable mode and unobservable mode are stable-
is presupposed in the output stabilization problem.

Using a geometric approach M.T.Li®" derived
the sufficient condition, Theorem IV-1 for the:
stabilization of linear time invariant system and
this was proved by Denham®® using alternative-
approach.

i=Azx+Bu (4--1)-
y=Czx

u=—Fy 4—2).
£=(A—BFC)x (4—3)

In the completely controllable and observable
system given by (4—1), R(C) and N(C) being
the range space and null space respectively, let
S be the orthogonal subspace of 7 where T is.
the largest invariant space of A’ contained in R
(C). And U is the smallest invariant space of A’
containing N(B’)

Theorem IV-1

System (4-1) is stabilizable if
{modes of A’ associated with U}N
{modes of A associated with S+N (H)}
are stable.
Using the fact ©* that if the constant feedback.
gain of unity rank is represented as the dyadic
form of F=gq#, then the closed loop characteristic-

polynomial G,(s) is given in a simple form as
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Gi(s)=1|sI—-A|+k(Cadj(sI—A)B)q 4—4
Seraji®® showed that the system is output feed-
back stabilizable if the missing coefficient of
power of sin |sI—A]|
k (Cadj(sI—A) Blq.

McBrinn and Roy®® developed a computational

is strictly positive in

algorithm to find the feedback gain which min-
imizes the real part of the least stable eigenvalue
of (4—1) to maximize the stability of the least
stable pole of the system. And the problem of
maximizing the most negative Hurwitz determ-
inant was considered by T.E. Fortmann®e,

To find the gain which makes the real part
of the eigenvalues of the closed-loop system less
than zero, Kreisselmeiler®” treated the problem
of minimizing the quadratic cost functional of
(4—5) and used Riccati equation

J(uF)=E{f:(u+Fy)' (et Fy)di)

Sirisena and Choi®® improved previous works

4—5)

and dealt the problem of stabilization by placing
the poles in the prescribed region of the complex
frequency plane. They developed a solution tech-
nique and computer algorithm to find the const-
ant output feedback gain which places the clos-
ed-loop system pole in the region given by the
inequality h(s,w)<0, where h(s,w) is a continuous
and differentiable function of the complex freq-

uency s=o-+jw
V. on Sensitivity with Output Feedback

In recent years there has been considerable
interest in reducing the sensitivity of the optim-
al linear regulator to parameter variations. This
is because a regulator designed to be optimal for
one set of system parameter values may well
cease to be optimal when these system paramet-
The
sensitivity constrained controllers presuppose the

ers deviate from their norminal values.

system state variables and sensitivity terms to
be available for feedback control purposes, ajl
condition often not met in practice. So the prob-
lem of deriving low-sensitivity feedback control-

ler for linear systems with incomplete state
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information is considered.

In 1974 Kurtaran and Sidar®® considered the-
problem of sensitivity of optimal performance of
linear quadratic stochastic systems with output
feedback, and derived the optimal-cost sensitivity.

Sirisena and Choi®> dealt with the problem of
the design of output feedback control systems
with minimum pole sensitivity to plant parame--
ter changes. Two different design approaches
were proposed. In one approach, exact pole-pla-
cement is obtained at the nominal values of the
values of the pole sensitivity to small parameter:
variations. The second approach yields optimal,
though not exact, pole placement in a minimum
mean square error sense over a prescribed range-
of parameter values.

The problem of output feedback controller
design with low trajectory sensitivity to small
parameter variations was considered for both de--
terministic and stochastic systems by O’Reilly ¢,
The performance index was of the standard linear
regulator type modified to include a quadratic.
sensitivity term. For deterministic systems, a
concise derivation of a low-sensitivity output feed
back controller was presented using the methd
of lagrange multipliers. For stochastic systems,
use was made of the observer-estimator of
O’ Reilly and Newmann {o present a unified.
approch to low-sensitivity controller design.

VI. Conclusion

In this paper the early works and later achie--
vements of output state feedback problem were
surveyed. Since the optimal control theory and
the pole-placement problem treated by Wonham,
impracticality to have the complete state inform--
ations induced many worker's attention to the
study of output state feedback problem. With
this natural trend, this paper treated the output
feedback problem in four categories, obtaining
the optimal gain, pole-assignment, stabilization,
and low-sensitivity controller design with output

feedback.
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