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1. Introduction

Problem of determining the stress distri-
bution in an elastic medium with flaws like
elliptical or ellipsoidal form has been inves-
tigated in several papers(3,4,7,8). All these
concerned with the analysis gin an infinite
medium and the problem when the medium
has finite thickness has received little
attention.

This paper concerns the determination of
stress distribution in an isotropic infinite
plate containing an elliptical crack when
the surface of the plate is subject to-a
prescribed force. The stress distribution
near a flat elliptical crack in an infinite
medium under a uniform tension at infinity
was investigated by Green and Sneddon
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[3). More recently Kassir and Sih [43
have considered the problem of elliptical
crack in an infinite elastic medium under
uniform shear. Both of them used ellipsoidal
coordinates and the Jacobian elliptic func-
tions to solve the problem.

However, such an approach does not
appear to be applicable to the problem for
the medium with finite thickness. For the
present analysis, double Fourier integral
transform is used, and it is shown that the
problem is equivalent to the solution of
Fredholm integral equation of the first kind.
As the ellipse reduces to a circle, it becomes
an axisymmetric problen‘ of penny-shaped
crack in an infinite plate which was orig-
inally considered by Lowengrub (5). We
have shown that the present integral equa-
Fredholm

equation of the second kind which is in

tion reduces to the integral
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agreement with the equation derived in an
alternative method.

The analysis throughout the paper is
formal, and no attempt has been made to
justify the interchange of various limiting
processes.

2. General Equation and Solution

The crack is taken to lie in the central
plane of the plate with its surfaces parallel
to those of the plate. It is assumed that
the deformation is due to the uniform force
applied to the surface of the plate.

If we take the center of ellipse as the
origin of Cartesian coordinates, and z-axis
perpendicular to the surface of the crack,
and x-and y-axis along the major and minor
semiaxis of ellipse, respectively, the crack,
then, occupies the region 2 which is gov-

b” Sl The

thickness of the plate will be taken to be 24.
If the free surface of the plate z=# |is
pulled by a uniform tension P, the boundary

erned by the equation ——~+

conditions for the present problem can be
mathematically stated as follows.

On z=0: 0.=0 (¥,») inside 2
u,=0 (x,y) outside 2
Tea =Ty =0

On z=|4k] 1 0.=

Tn::'fyz:O
If we choose the components of the displa-
cement vector to be (#.,u, u.-Pz/5?), the
boundary conditions take the following form:

On z=0:0,=—P (%) inside @ (2.1)
#,=0 (x,y) outside 2 (2.2)
Tes=Tye=0 2.3
On z=|/| : 0,=0 (2.4)
Tre=Ty =0 (2.5)

where = 1/';;2"/ = 21(1_;::) . being Pois-

son’s ratio. If we take the unit of stress

to be the rigidity modulus ¢/, and introduce

three harmonic functions X, ¢ and ¢, so that
VZX=[72<p=Vz¢=0

and express the component of the displace-

ment vector in terms of them through the

equations [10]

2 0% </J
e "+ R G e T
_._ 0% op 2 2 a'
”"a—_ay +~—+(ﬁ I)Zayaz 27 (2.6)
2 aSP 2 o
== fr T (B 1) 2 azz S T

It is easﬂy verlfled that the stress field is
given by the equations

%
ox°

o.=—2(f-2) azz +2 axz +2

+2(f-1) = azﬁz“ gﬁ ~2gn @1
oy=—2(f—2) - a ‘%('29‘
+2(f—1) 2=, yzaz ¢ gf ,
gi= —2(fi—1) -2 az2 +2 622 +2(f-1)z g‘f
+22 gz‘f —2 gf '
Ty=2(f —1) 2525 aszz +22 ay;ﬁz +2 ayaz
r“=2(/32 1) z az;;z 2z azci()/)z +26x62 2.8)
T2 axay +2(ﬁz"1)zaxaa;az oz 38"%
+2axay

Suitable functions for ¢, ¥ and ¢ are chosen
to be

Ay, v) dudv

o(x,3,9=] i e @9

X (%, 9, 2) = _2.1; H B(&,5) coshfz e =+
dédy (2.10)
¢(x,,2) "=“él;‘ 5:5 C(&,7) sinhlz e~i¢=+n»

dédy
where L= /&45%

2.11)
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Since the limiting value of the derivative
of ¢ is given
( op >= [ —2zA(%,5) (x,y) inside 2

%2/ o (x,9) outsidep ?- 12)

we can immediately see that the boundary
conditions (2.2) and (2.3) are automatically
satisfied by the choice of the functions ¢, %,
and ¢ given by Eqns. (2.9) —(2.11).

It is easily shown that the boundary
condition r.,=0 on the surface z=# yields
the equation

sG] A e L= 35

)dudv

—+- {f e BE it )

COShih} e i@+ dedn=(
where
rh= ((x—u) 24 (y—v) 2+ h2) 172
Inverting the Fourier Transform, we obtain
the equation
B(&, 7)sinklh+h.C(§,7) coshth

_?iﬂ_z:l_)ing(u, vau do [f (Ls- o)

2mi&C 2
(x —u) el e+ dx dy (2.13)
If we integrate the right hand side of Eqn.
(2.13) by parts, we obtain the equation

(=1

3§ (Butno)
ot BA (u, v)du dv &'+

et
(x2+y2+ hz) 3/2 (x2+y2+ hz) 5/2
ef €=ty dxdy (2.14)

If we make use of the known integrals (2]

- coséxdx T3
j (x2+y2+hz)s/2 ‘\/yz_{_th!(E\/y +h )

= K, (& VY2 h2)ycosny .,

0 =g
S" coséxdx &z

0 (x2+y2+h2)5/2 302+

NG
N Kz(wy ) cos,,ydy_-z_;r__LfgL

p“"JéZ+q2

K 6/ y2+R7)

Qa +h «/ £2+9%)
where K, andK. are modified Bessel func-

tions of the second kind, to the inner inte-
gral of Eqn. (2.14), we find, after simpli-
fying, one relation connecting the unknown
functions A(x, x), B(,7), and C(§, 1)

B(&,p) sinhth+h.C(§, 1) coshlh

=h(F—1)e LA(M’ V)@ dydy  (2.15)
If we use the boundary condition z,.=0 on
the free surface z=k, we would again
obtain Eqn. (2.15).

Similarly, from the bouhdary condition o.
=0 on the free surface z=h, we have the
equation

B(& ) L coshih+C (8, v)C(Ch sinklh —coshth)

= *I)S A(u, v)dudy 55 —+ 6h2

+3he-0
—_# —1) [
2n h

X >e’(€‘+’”’ dxdy

e (3420h) + v/8x (VIh)®
K (@) )
XLA (u, v) & 1% dudy

(2.16)

If we use the relation
DKy (Gh) = =G Ko s (OB)
= —\/ 2Zh —“<1+ C:Z +‘g23}iﬂ>
to eqn. (2.16), we obtain another relation
between A(u,v), B(&, 7)) and C(& 7)
tEcoshth+C (&, 1) L(Ch sinklh—coshih)

=(F—1) e (Th+1) [ A v) o dudy

{2.17)
If we solve eqns. (2.15) and (2.17) simul-
taneously for B(4,7) and C(§,7), we get

2(p—1)¢h®

B(E 77) 2€h+s1n zc IQA (ul v) @b (Eutny)
dudy (2.18)
and
_ _ 2(5*=1) (the-Vsinkth)
C = 2Ch+sinh2lh
SQA (u, v) &' &+1) dudy (2.19)

Now, if we substitute from eqns. (2.9)-(2.

11) into the third of eqn.(2.7), and use
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the boundary condition (2.1), we have the
equation
Au, v) du dv 1 [
-1 [ Abndudy 72;ﬂmw(«s,»y)

—C(2, )} e-itxsm dedn=—§ (2. 20)

‘where

r=y G =
If we substitute from eqns. (2.18) and (2.
19) into eqn. (2.20), we obtain, after sim-
-plification

A(u, v)du dv
73

1
—2—7;ng (v, v) du dv

j:j CM(Gh)e~i ta=ntt b=am gidy

—os

P
T2 @.21)
where
M) = —2u (1) fe 2 —1

2u~+sin k 2u

If we make the coordinate transformation
&=Ccosy, p={ sing and make use of the
known integral (11]

— 1 = ircosg
Jotr)= e d

one of the inner integrals of the second term
of left hand side of eqn. (2.21) can be eval-
uated. Thus we have

j _éﬂl’;)s:‘idl’_—jn,q(u, v)du dv

(2. 22)

fimene nen d=5zE

The above equation can be written as

_P _

2(p*~1)
(2.23)

& jQA (u,v) k(u,v;%,5) dudv=—

where
kG, vix,9) =L+ [ "M@ @nac
with

If we integrate eqn. (2.23), we obtain the
desired Fredholm integral equation of the
first kind

[ A o) K@, v:5,5) dudv= _T@lg—”_ﬁ
(2.24)
where
K vz, y)
=k(u,v;x, ) — (x2=y*+1) k(u,v;0,0)

+ (=32 k(u,v;0,1)
3. Penny-shaped Crack

In the special case, when the ellipse reduces
to a circle, it becomes an axisymmetric
problem for the penny-shaped crack, and
eqn. (2.23) can be simplified.

Since eqn. (2.21) can also be written as

e [ S‘OA (‘;:i’). du dv”EIESQA (u, v)du dv

5‘]‘ IK‘(EEZ) e—i (=W e+ (y=0) ) } dédy
il S

_— P
=3I (3.1)

if we transform the Laplacian in polar
coordinates and integrate eqn. (3.1) twice
and let

X=pCOSyp, y==psing

#=0cosf, v=gsind
eqn. (3.1) can be written as, for A(x, v) is
the function of ¢ only when it is axisym-
metric

a 2z dd)
A —d
‘[0 @ jﬂ v 0 —2pac0o8 (¢ —w) + o> 7

..._17: s:j:‘A(o‘) JzTE:M(Ch) 23t (osin (p=¥)

~gsin (§~¥¢)) d:d¢'d6
— Pp?
BEICEN
Copson(1] has shown that the inner integral
of the first term of the above equation is
equal to
J‘min(p,o) dt
¢ v (02 —1%) (o —17)
If we again make use of eqn. (2.22) to the
second term of left hand side of eqn. (3. 2),

(3.2)
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it reduces to

r a(t) df ~2{"A@ [T MEn I o (o)
= P
dido=—grr 1) -9
where
a(t) = :~%%°—2: 6.4)

Inverting above Abel type integral equation,
we obtain the equation
a() + A [ "M Em costt Jo(to)dedo

P d (! 3dp
T4 d@ JovE—gt

In the above equation we have used the

(3.5)

known integral (2]

pfo(f;p) - sin(gt)
Vi dp= ¢ 3.6)
From eqn. (3. 4), we have
A= 2 d(rtadt _ 2 d

7 do s Jft*—¢> =w do
j“a’ ) V=g dt

where <Qrime denotes the differentiation
with resp2:ct to the argument. ‘We put this

valuz of A(s) into eqn. (3.5),

Leibnitz rule.
a 2 a’ () dt
SOA (0)Jo(Co) do= =~ jo_\. ‘:/tz( )
13 o-1a-

and use the

Jo (Co)do

Chiaziaz ¢ of intszratioa in the

above equation, we have
2 (°, a/o (aC)
Tjoa (t)s L) dodt

If we make use of eqn. (3.6) and integrate
by parts in the above equation, it becomes

-z f a(t) costt dt

So, finally, we have the Fredholm integral
equation of the second kind

ao)—2 ["a)K ¢ 0) dt=——7

where

Kt p) = f:M(gh) cosyt coslpdl

Except range of integration and the free
(3.7) 1is indentical with the
integral equation for an exterior crack in

term, eqn.

an infinite plate obtained by an alternative
method in (9].

4. Elliptical Crack in an Infinite Medium

When the medium is infinite, the thick-
ness of the plate is infinite, and the second
term of the left hand side of eqn. (3.1)
vanishes and it reduces to

2 ( A, v)dudv _ P

v J pa =TS (4.1)

If we choose
2 2

A(n, v) =B(1 *TZZ— ——ZH*

the integral
u2 2
(l— 7 )%dudv

e L(x—u)2+ (—0) 7%
is integrable and is equal to (6], for >

and ef=

“E()

#b B|K(e) — ZZ "K(e)

> E(e)— (1—e) K(e) 1
e et J
where K and E are complete elliptic integ-
rals of the first and second kind.
Thus from eqn. (4.1),
bP
b= =D
Therefore from eqn. (2.12), the
displacement over the crack is
_bP(1—y) 1 %% ¥? it
E(e) a? b*
which is in agreement with the result of
Green and Sneddon.
The solution of eqn. (2.23) and the quan-

tities of physical interest will be considered

B is equal to

normal

in part .
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