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RIVLIN-ERICKSEN FLUID FLOW PAST A STRETCHING 

PLA TE WITH SUCTION 

By B. Siddappa and Prakash S. Hiremath 

1. Introduction 

In industries producing plastic films and sheets of synthetic material, .one 

often encounters the problcm of flow past a stretching sheet. Crane [1] has 

studiecl the viscos flow past a stretching plate and the nature of the boundary 

Iayer produced by the stretching plate in the ambient fluicl medium. The flow 

in this case fincls certain similarities with the Hiemenz boundary layer flow [2] 

near a stagnation point in which the mainstream velocity is proportional to the 

distance from the stagnation point. Siddappa and Khapate [3] have extended 

Crane’ s work to the Rivlin-Ericksen fluid flow and have cletermined the effects 

of non-Newtonian character of the ambient fluid medium on the boundary 

Iayer flow characteristics. In this paper, the problem of Riv1in-Ericksen fluid 

flow past a stretching plate with suction is studied. The velocity of the plate 

is assumed to increase linearly with the distance from the s1it and the suction 

velocity at the plate is uniform and constant. 

2. Formulation of the pl'oblem 

A steady two-dimensional flow of Rivlin-Ericksen fluid past a porous stret­

ching plate issuing from a slit is considered. (x, y) are rectangular cartesian co­

ordinates with origin at the s1it, x being measured along the plate in the 

direction of motion. (u, v) are the corresponding velocity components. Then the 

relevant boundary Iayer equations [3] are 

teu .. +vμ =uze .... +β[ (zeκ + VUy) .... +2(μ zeJJ +r(μ2) y - -- yy . ,- L '- -- -- x . - -. J" yy . - '- -. x--Y" y 

and μ +11=0 x v 

(2. 1) 

(2.2) 

where ν， β， r are kinematic viscosity, visco-elasticity and cross-viscosity. The 

subscripts denote the partiaI derivatives with respect to the indicated variables. 

The relevant boundary conditions are 

y=O ; μ=ax， v=-v。

y=∞; μ=0， 

μv=o. 

v= 一 C (2.3) 



268 B. Siddappa and Prakash S. Hiremath 

where a, c, Vo are positive constants. ν。 is the constant uniform suction velocity 

at the plate and c is the constant velocity with which the fluid is approaching 

the plate at large distance from it. 

3. Solution of the problem 

Set u=axf'(y). 

Then eqs. (2.2) and (2.3) give v=a [f(O)-f(y)] -vo 

Now eq. (2. 1) reduces to 
~ r V，、

f'~十 I f(O) - f(y) - aV f(O)-f(y)- 양l/v 

(3. 1) 

(3.2) 

+2f'fm +3f"21 +2r 1"2 (3.3) 

where primes denote differentiation with respect to y. The boundary conditions 

(2. 3) reduce to 

y=O ; /'(0)=1 

y=∞ ; f'(∞)=0， c=vo+a [f(∞)-f(O)] 

f"(∞)=0. 

Try a solution of the form 

f'(y)=e -ky’ Re(k)>O. 

Then eq. (3.3) reduces to 

떻ξk3+ 둥+β+(4β+2r)쐐k2-
Case 1. Y is small. 

When .y is small, eq. (3.6) reduces to 

v^ 
V k-1=0. 

a 

k3+푸n ( ~ +5β+2rk2- 」」k--으^ =0 rP\ a 1 .... 1'-' I "'"'1 J β νOß 

(3.5) 

(3.6) 

(3.7) 

By the theory of equations [4l , the roots of eq. (3.7) are real and distinct or 

include a complex pair according as I'.l is negative or positive, 

108 I'.l= - 4:r+V2 
β‘J 

V2=(_강­
voÞ 

2 

and A=응+5ß+강· 

2 

where 

(3.8) 
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2 __ TT2 ., _ TT2 Now ß은o according asV 른Vî where Vi' is the. positive root of the quadratic 

equation obtained by setting eq. (3.8) equal to zero, provided that A is negative; 
2 _7.2 

otherwise, that is if A is positive, ß등o according as V 를Vï. 

Thus, for small y , the components of velocity will contain terms osciIlatory 

in space, so that the fIow is oscillatory for a certain range of the suction para-
2 .......... T2 meter Vî <VW 

<∞， but only real exponential terms for the remaining values 
2 .........T2 O<VW <Vî provided that A is negative; otherwise, that is if A is positive, the 

2 ........ ,.2 
flow is oscillatory for O<Vw <Vï and is non-oscillatory for the remaining values 

2 ...........2 
Vi' <V

W

<∞. 

Case 2, Y is large. 

When y is large, eq. (3.6) reduces to 

k3+ 판o ( ~ +비k2 -〕끌k-
‘, O/'" 、 “ / /'" 

a ~ 

ν。ß -V, (3.9) 

the roots of which are real and distinct or include a complex pair according as 

E is negative or positive respectiveIy, where 

- | 4 2/ B2 B \ 3 108 ß= -1-τ-+V"'l ~? +18--"';:;' -27)+4V~B"I ， 
βι 、 g‘ p 

V2=(_으끼 
νσ 01-' 

and B=웅+β. 

2 

(3.10) 

Now l르0， according as V2를V; where V; is positive root of the quadratic 

equation obtained by setting eq. (3.10) equal to zero, provided that B is nega-
.~~ ... .......2__.......2 

tive; otherwise. that is if B is positive, ß를o according as V 듬V;. 

Thus, for large y, the fIow will be oscillatory for a certain range of values 
2 .........,..2 

of the suction parameter V; <VW 
<∞ and non-oscillatory for remaining values 

2 .......7'2 
O<VW <V2 provided that B is negative; otherwise, that is if B is positive, the 

2 ........,..2 
fIow will be oscillatory for O<Vw <V; and non-oscillatory for remaining values 

2 /T ,.2 V;<V'" <∞. 
The velocity components are 

y small: μ=axe-k，y 

ν=-( 옳)(l-e-k，y)-vO (3.11) 
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where k 1 is a root of eq. (3.7) with positive real part. 

y large: -k,y 
μ=ax e 

ν- 」E-e-k，y- ι 

2 

where c=ν0+월 and k2 is a root of eq. (3.9) with positive reaI part. 

(3.12) 

4. Skin friction 

Shear stress at a point in the plate is 
끼zt \ 

7:'0= -μ[ 숭늬 =k1μχ。
'y=O 

where zto=ax. Dimensionless shear stress at a point on the plate is 

7:'0 k1u. / , , ! ~ _ 1 
;E-=강:-=kl〔u/a) 2 Rx 2 (4. 2) 
γ~O v 

(4. 1) 

ze.λX 

where R，，=냥- is the Reynolds number at the point. The totaI drag on both 

sides of the plate upto the distance x from the sIi t is 
。 」」 -」-

bx PZt탬l(ula) 2 R" 2 (4.3) 

where b is the width of the plate. 

5. The boundary layer thickncss 

The boundary Iayer thickness δ is the value of y at which 

v= -0. 99c. (5. 1) 

Using eq. (3.12), one gets 

δ=강 
2 

1OOk ,a 

ln k2(a+UokI) • (5.2) 

The dimensionless boundary Iayer thickness is 

;; / a+νok ， 、 -1 100 k ,a 
~ = ( ，， ~j.) R _ ln' , / r J. l \ uk

1
k

2 
) H/ ... k

2
(a+vok

1
) 

(5.3) 

where R,= 쑤 is the Reynolds number and 1 is the characteristic length. 

6. Heat conduction in linear stretching case 

The boundary layer equation governing the flow of heat is 
T 
-k 

‘0 -, 
6 

”w + aT U 
U 굉-= p 해

 -
상
 

(6. 1) 
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where T is the temperature and P is the Prandtl number. Let the temperature 
of the sheet have the constant value T" and the surrounding fluid the constant p 

temperature T s and put 

T-T 
T=τ~ 순， η=ky. 

P ‘ s 
(6.2) 

If the heat conduction is in the y direction only, 
- --

dT νk d “ T 
ν'------
dη - P 

then eq. (6. 1) reduces to 

(6.3) 
dη4 

The boundary conditions are 
η==0 : 

η=∞: 

T=l 

T=O (6.4) 

For small y , v=-운(1 -e-η 一 Vo where η=k1y. 

Therefore, the solution of e. q (6.3) subject to eq. (6.4) is 

where r(n, x) 

r| Pa k1vO Pa -n 1+ 2 e 
vk7 a 

’ vkî 
T= 

l 
(6.5) 

k1vO r| Pa Pa 
1+ a 2 2 

vki ’ vki 
x 

is the incomplete gamma function r tn一 1 e-t dt, Re(n)>O. 
0 
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T 

je2C -η ‘ 
강--e -) where η=k2y. 

(6.3) subject to eq. (6.4) is 

PC Pa_꺼 
파’꿇 e -, 

Pc Pa rl .~1.- • - -_2 vk2 ’ lJka 

Heat flux from one side of the plate is 
1 1 

q(x)=K{ 떻) =좋R/ k1 (v/a) 2 (강-Ts) M(aP/팩)， 
y=o 

r 
T= • (6.6) 

(6.7) 

where K is the coefficient of conductivity and 

’‘’m(l 十 k,vo/a)o-m 
M(m)= r갚71 I L -- ;、 .u ... 1 , m=3L. 

vkï 
(6.8) 
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7. Diseussion 

For zero-suction case (vo=O) , k1 = (a/vk')τ and k2=(a/vk")융， 
where k ’=1+(5ß+2r)a/v and k’ =1 + ßa/v. Then eqs. (4.2), (5.3) and (6.7) 

reduce to 
.... 1 1 
‘딛=k，-τ R;τ， 

pteo 

’ 
_1 1 1 

÷=Rl ‘ (k' k") 2 ln 100 (k" /k') 2 , 
__ 1 1 

and q(x)=몫(Tp-Ts) RF Y-τH(Pk')， 

m -tn 

(7. 1) 

(7.2) 

(7.3) 

where H(m)= 쁨옳ì " m=Pk', respectively, which agree with the results 

obtained by Siddappa and Khapate [3]. Hence, due to suction vo' the skin 

friction is reduced by a factor k1 (k’v/a) 2 , the boundary layer thickness is 

reduced by a factor 

[(a+vOk1)/vk1kz] ln [100 k1a/k2(a+vokl)] 
• 

1 1 
(k' k") z ln [100(k" / k') 2 ] 

and the heat f1ux is reduced by a factor [k1 (v/재')윷M(aP/v잭)l!H(Pk'). 
It is striking to note that the above analysis of the nature of f10w holds good 

[or negative values of vo also (i. e. injection case), since the nature of f10w 

depends on the parameter V2=(a/Uo8)2. 
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