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RIVLIN-ERICKSEN FLUID FLOW PAST A STRETCHING
PLATE WITH SUCTION

By B. Siddappa and Prakash S. Hiremath

1. Introduction

In industries producing plastic films and sheets of synthetic material, one
often encounters the problem of flow past a stretching sheet. Crane [1] has
studied the viscos flow past a stretching plate and the nature of the boundary
layer produced by the stretching plate in the ambient fluid medium. The flow
in this case finds certain similarities with the Hiemenz boundary layer flow [2]
near a stagnation point in which the mainstream velocity is proportional to the
distance from the stagnation point. Siddappa and Khapate [3] have extended
Crane’s work to the Rivlin-Ericksen fluid flow and have determined the effects
of non-Newtonian character of the ambient {luid medium on the boundary
layer {low characteristics. In this paper, the problem of Rivlin-Ericksen fluid
flow past a stretching plate with suction is studied. The velocity of the plate
is assumed to increase linearly with the distance from the slit and the suction
velocity at the plate 1s uniform and constant.

2. Formulation of the problem

A steady two-dimensional flow of Rivlin-Ericksen fluid past a porous stret-
ching plate issuing from a slit is considered. (x, y) are rectangular cartesian co-
ordinates with origin at the slit, x being measured along the piate in the
direction of motion. (#%,7) are the corresponding velocity components. Then the
relevant boundary layer equatioﬂs (3] are

g =V +B[(un_ mcy)yy—l—2(uxzay)y] 7(%); “2.1)
and zax—[—vy:O (2.2)

2 x-l— VU

where v, 8,7 are kinematic viscosity, visco-elasticity and cross-viscosity. The
subscripts denote the partial derivatives with respect to the indicated variables.

The relevant boundary conditions are
y=0: u=ax, v=-—vy

y=00; u=0, v=-—¢ | (2.3)
%, =0. )
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where @, ¢, vy are positive constants. 7, is the constant uniform suction velocity

at the plate and ¢ is the constant velocity with which the fluid is approaching
the plate at large distance from it.

3. Solution of the problem

Set w=azxf'(y). (3.1)
Then egs. (2.2) and (2.3) give v=a[f(0)—F(N] -, (3.2)
- Now eq. (2.1) reduces to
v () .
o4 KO- K) == | Fr=2f "+ B[ O ~F -~ | 7
+2frfm_‘_3fﬂz}_|_2rff!2 (3_ 3)

where primes denote differentiation with respect to y. The boundary conditions
(2.3) reduce to

y=0; f(0)=1

y=00; f'(00)=0, c=vy+al[f(o0)—s(0)]

J”(e0)=0.
Try a solution of the form
F(N=e ", Re(&)>0. ' (3.5)

Then eq. (3.3) reduces to

voﬁ 3| L -..-ky 2_ z"O __
k| LB+ (48 +20)e P K -k —1=0, (3.6)
Case 1. y is small.
When 4 is small, eq.(3.6) reduces to
3 a v 2 1 @
| ; - - =(. 3.7)
2 voﬁ(a 5627 )i~k =0 (3.7,

By the theory of equations [4], the roots of eq. (3.7) are real and distinct or

include a complex pair according as A is negative or positive, where

108 A= - | ;3 v ;f '.182 27)+4v" 4%, (3.8)
2
Vz_( v:ﬁ )
and A= Z -58-+27.
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Now A=0 according as-Vz%"Vf where V% i1s the positive root of the quadratic
equation obtained by setting eq. (3.8) equal to zero, provided that 4 is negative;
otherwise, that is if A is positive, AS0 according as V'SV,

Thus, for small y, the components of velocity will contain terms oscillatory
in space, so that the flow 1s oscillatory for a certain range of the suction para-

meter Vf<V2<m, but only real exponential terms for the remaining values
0<V2<Vf provided that A is negative; otherwise, that is if A4 is positive, the
flow is oscillatory for O<V2<Vf and 1s non-oscillatory for the remaining values
Vi<V <o,
Case 2, y is large.

When y is large, eq. (3.6) reduces to

3 a Vv, 2____1_ __a __
B voﬁ(a .B)k =g =0 (3.9)

the roots of which are real and distinct or include a complex pair according as

A is negative or positive respectively, where

108 E=—[§=;—+V2( ?j l 18‘*? -27)+4V4B3], (3.10)
2
sz( vjﬁ )
and B=—-g—-+5.

Now As0, according as V2§V§ where Vg is positive root of the quadratic
equation obtained by setting eq. (3.10) equal to zero, provided that B is nega-
tive; otherwise, that is if B is positive, AsO0 according as V2§V§.

Thus, for large y, the flow will be oscillatory for a certain range of values

of the suction parameter V§<V2<oo and non-oscillatory for remaining values
0<V2<V§ provided that B is negative; otherwise, that is if B is positive, the
flow will be oscillatory for 0<V2<V§ and non-oscillatory for remaining values
ViV* <oo,

The velocity components are

—k
y small: u=axe 7

- —(%>(1‘3_k'y)‘”0 ' (3.11)
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where %, is a root of eq. (3.7) with positive real part.

y large: u=ax e
@ —k
v=-r7—e " —c (3. 12)
2

where c=vo—|—-—£z- and k&, is a root of eq. (3.9) with positive real part.
1

4. Skin friction

Shear stress at a point in the plate is

o= "“(%")y:(,:klﬂ”o (4.1)
where #y=ax. Dimensionless shear stress at a point on the plate is
__Toz = il =k (u/a)%f? -
04 %, 1 x (4.2)

2
where R _= > is the Reynolds number at the point. The total drag on both

sides of the plate upto the distance x from the slit is
1

—

1 _
bx pugkl(u/a) 2R, 2 4.3)
where b is the width of the plate.
5. The boundary layer thickness

The boundary layer thickness ¢ is the value of y at which

v=—0.99c. (5. 1)
Using eq. (3.12), one gets
1 IOOkld
The dimensionless boundary layer thickness is
a+v _1 100 &2,
_?':( }e}gk] ) R, In - l;fg » (5. 3)
vk k., { (a+v,k;)

where R,-_.—ij—- is the Reynolds number and / is the characteristic length.

6. Heat conduction in linear stretching case

The boundary layer equation governing the flow of heat is

or , oT _ v 3°T
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where T is the temperature and P is the Prandtl number. Let the temperature
of the sheet have the constant value Tp and the surrounding fluid the constant
temperature T, and put

_ T-T,
T= T,=T, n=Fy. (6.2)

If the heat conduction is in the y direction only, then eq. (6.1) reduces to

dT vk d°T

Tdn TP g7 (6.3)
The boundary conditions are

n=0 : T=1
For small y, v=— ]f (1—e™ ") —v, where n==£ky.

1
Therefore, the solution of e.q (6.3) subject to eq. (6.4) is

r[ Pa_<“ kg ) Pa 3_]

o vk a vk 6.5
Pa kYo \  Pg '
F[ vk (1 g ‘). vk ]

e
where I'(#,x) 1s the incomplete gamma function f "~ o7t dt, Re(n)>0.
0

R.C _
a 2 ]
For large y, v=— E ( - e ) where n=£,y.

Therefore, the solution of eq. (6.3) subject to eq. (6.4) is
r[ Pc - Pa —7 ]

B Vky ukz ’
T= p Pc Pa_] . (6.6)
[ vk, ukg

Heat flux from one side of the plate is

1 1
aD=K(G-)  =ERT /) ¥ (T,~T) M(aP/E), 6.7)

where K is the coefficient of conductivity and

B mm(l——klﬂu/a)e—m @
M(m)= I'im(1+kpy/a), m] m—ﬁ%l"' (6.8)
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7. Discussion

A 1
For zero-suction case (v,=0), k,=(a/vk’) 2 and k,=(a/vk”) 2,

where 2’ =14+(58+2r)a/v and £”=14+Fa/v. Then eqgs. (4.2), (5.3) and (6.7)
reduce to

T, A 1
2 =k ° Rx 2’ (7.1)
o1
0
J —1 1 A
=R, (K¥)2 In 100 (&"/k) 2, (7.2)
K N S
and ¢(x)=——(T,~T) R}? ¥~ 2 H(PK), (7.3)
mme—-m

where H(m)= T (m, m) m=PFE, respectively, which agree with the results

obtained by Siddappa and Khapate [3]. Hence, due to suction 7, the skin

1
friction is reduced by a factor k,(k¥'v/a)?, the boundary layer thickness is

reduced by a factor
[(a+v,k,)/vkR,) In (100 kya/k(a+vyk,)]

1 1
(B’°k”) 2 In [100(R"/F) 2]
1
and the heat flux is reduced by a factor [%,(v/2k") 2 M(aP/uk?)]/H(Pk’).

It is striking to note that the above analysis of the nature of flow holds good
for negative values of v, also (i.e. injection case), since the nature of flow

depends on the parameter sz(a/voﬁ)z.
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