ON GENERIC SUBMANIFOLDS WITH ANTINORMAL STRUCTURE OF AN ODD-DIMENSIONAL SPHERE

Dedicated to professor Chung-Ki Pahk on his sixty fifth birthday

By U-Hang Ki

0. Introduction

Recently, several authors have studied generic (anti-holomorphic) submanifold of a Kaehlerian manifold ([5], [7], [9], [10], [11], ctc.)
On the other hand, the author in the previous paper ([4]) studied a generic submanifold of an odd-dimensional unit sphere under the condition that structure tensor f induced on the submanifold is normal.
The purpose of the present paper is to study a minimal generic submanifold of an odd-dimensional unit sphere whose induced structure on the submanifold is antinormal (see 1).
In 1, we recall fundamental properties and structure equations for a generic submanifold immersed in a Sasakian manifold and define the structure tensor f on the submanifold to be antinormal.
In 2, we investigate a generic submanifold with antinormal structure of an odd-dimensional sphere whose normal connection is flat.
In the last 3, we characterize minimal generic submanifolds of an odd-dimensional sphere under certain conditions.

1. Preliminaries

Let $M^{2 m+1}$ be a ($2 m+1$)-dimensional Sasakian manifold covered by a system of coordinate neighborhoods $\left\{U, x^{h}\right\}$ and $\left(F_{j}^{h}, G_{j i}, F^{h}\right)$ the' set of structure tensors of $M^{2 m+1}$, where, here and in the sequel, the indices h, j, i, \cdots run over the range $\left\{1^{\prime}, 2^{\prime}, \cdots,(2 m+1)^{\prime}\right\}$. Then we have

$$
\begin{gather*}
F_{t}^{h} F_{i}^{t}=-\delta_{i}^{h}+F_{i} F^{h}, F_{t} F_{i}^{t}=0, F_{t}^{h} F^{t}=0, \tag{1.1}\\
F_{t} F^{t}=1, F_{j}^{t} F_{i}^{s} G_{t s}=G_{j i}-F_{j} F_{i},
\end{gather*}
$$

where $F_{i}=G_{i t} F^{t}$ and

$$
\begin{equation*}
\nabla_{j} F^{h}=F_{j}^{h}, \nabla_{j} F_{i}^{h}=-G_{j i} F^{h}+\delta_{j}^{h} F_{i}, \tag{1.2}
\end{equation*}
$$

∇_{j} denoting the operator of covariant differentiation with respect to $G_{j i} \cdot$
Let M^{n} be an n-dimensional Riemannian manifold isometrically immersed ir $M^{2 m+1}$ by the immersion $i: M^{n} \rightarrow M^{2 m+1}$ and identify $i\left(M^{n}\right)$ with M^{n}. In terms of local coordinates (y^{a}) of M^{n} and (x^{h}) of $M^{2 m+1}$ the immersion i is locally expressed by $x^{h}=x^{h}\left(y^{a}\right)$, where, here and in the sequel, the indices a, b, c, \cdots run over the range $\{1,2, \cdots, n\}$. If we put $B_{b}^{h}=\partial_{b} x^{h}, \partial_{b}=\partial / \partial y^{b}$, then B_{b}^{h} are n linearly independent vectors of $M^{2 m+1}$ tangent to M^{n}. Denoting by $g_{c b}$ the fundamental metric tensor of M^{n}, we then have

$$
g_{c b}=B_{c}{ }^{h} B_{b}{ }^{k} G_{h k}
$$

because the immersion is isometric.
We denote by $C_{x}^{h} 2 m+1-n$ mutually orthogonal unit normals of M^{n} (the indices u, v, w, x, y and z run over the range $\left\{1^{*}, \cdots,(2 m+1-n)^{*}\right\}$. Therefore, denoting by ∇_{c} the operator of van der Waerden-Bortolotti covariant differentiation with respect to the Christofel symbols $\left\{\begin{array}{c}a \\ c\end{array}\right\}$ formed with $g_{c b}$, we have equations of Gauss and Weingarten for M^{n}

$$
\begin{equation*}
\nabla_{c} B_{b}^{h}=h_{c b}^{x} C_{x}^{h}, \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} C_{x}^{h}=-h_{c x}^{a} B_{a}^{h} \tag{1.4}
\end{equation*}
$$

respectively, where $h_{c b}^{x}$ are the second fundamental tensors with respect to the normals C_{x}^{h} and $h_{c x}^{a}=h_{c b}{ }^{y} g^{a b} g_{x y}, g_{x y}$ being the metric tensor of the normal bundle of M^{n} given by $g_{x y}=G_{j i} C_{x}^{j} C_{y}^{i}$, and $\left(g^{c b}\right)=\left(g_{c b}\right)^{-1}$.
If the ambient manifold $M^{2 m+1}$ is a $(2 m+1)$-dimensional unit sphere $S^{2 m+1}(1)$, the equations of Gauss, Codazzi and Ricci for M^{n} are respectively given by

$$
\begin{gather*}
K_{d c b}^{a}=\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+h_{d}^{a x} h_{c b x}-h_{c}^{a x} h_{d b x}, \tag{1.5}\\
\nabla_{d} h_{c b}^{x}-\nabla_{c} h_{d b}^{x}=0, \tag{1.6}\\
K_{d c y}{ }^{x}=h_{d e}^{x} h_{c y}^{e}-h_{c e}^{x} h_{d y}^{e}, \tag{1.7}
\end{gather*}
$$

where $K_{d c b}{ }^{a}$ and $K_{a c y}{ }^{x}$ are the Riemannian Christoffel curva ${ }_{\text {tur }}$ e tensor of M^{n} and that of the connection induced in the normal bundle respectively.
Now we consider the submanifold M^{n} of $M^{2 m+1}$ which satisfy

$$
N_{P}\left(M^{n}\right) \perp F\left(N_{P}\left(M^{n}\right)\right)
$$

at each point $P_{\epsilon} M^{n}$, where $N_{P}\left(M^{n}\right)$ denotes the normal space at P. Such a submanifold is called a generic submanifold (an anti-holomorphic submanifold), ([4], [8], [10]).

From now on we consider in the sequel generic submanifolds immersed in a Sasakian manifold $M^{2 m+1}$. Then we can put in each coordinate neighborhood

$$
\begin{equation*}
F_{t}^{h} B_{c}^{t}=f_{c}^{a} B_{a}^{h}-f_{c}^{x} C_{x}^{h}, \tag{1.8}
\end{equation*}
$$

where f_{c}^{a} is a tensor field of type $(1,1)$ defined on M^{n}, f_{c}^{x} a local 1-form for each fixed index x, v^{a} a vector field, u^{x} a function for each fixed index x, and $f_{x}^{a}=f_{c}^{y} g^{a c} g_{y x}$.

Applying F to (1.8) and (1.9) respectively, and using (1.1) and these equations, we easily find that ([4])
(1.11)

$$
\left\{\begin{array}{l}
f_{c}^{e} f_{e}^{a}=-\partial_{c}^{a}+f_{c}^{x} f_{x}^{a}+v_{c} v^{a}, \\
f_{c}^{e} f_{e}^{x}=-v_{c} u^{x}, \\
f_{x}^{e} f_{e}^{y}=\delta_{x}^{y}-u_{x} u^{y}, \\
v^{e} f_{e}^{a}=-u^{x} f_{x}^{a}, \\
v^{c} f_{e}^{x}=0, \\
g_{d e} f_{c}^{d} f_{b}^{e}=g_{c b}-f_{c}^{x} f_{x b}-v_{c} v_{b} .
\end{array}\right.
$$

Since $F_{t} F^{t}=1$, we have from (1.10)

$$
\begin{equation*}
v_{a} v^{a}+u_{x} u^{x}=1 \tag{1.12}
\end{equation*}
$$

Putting $f_{c b}=f_{c}^{a} g_{a b}, f_{c x}=f_{c}^{y} g_{y x}$, then we easily see that $f_{c b}=-f_{b c}, f_{c x}=f_{x c}$ because of (1.11).

Differentiating (1.8), (1.9) and (1.10) covariantly and using (1.1)~(1.4), we have respectively (see [4])

$$
\begin{equation*}
\nabla_{c} f_{b}^{a}=-g_{c b} v^{a}+\delta_{c}^{a} v_{b}+h_{c b}^{x} f_{x}^{a}-h_{c x}^{a} f_{b}^{x}, \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} f_{b}^{x}=g_{c b} u^{x}+h_{c e}^{x} f_{b}^{e}, \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} f_{x}^{a}=\delta_{c}^{a} u_{x}+h_{e c x} f^{a z} \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
h_{c x}^{e} f_{e}^{y}=h_{c}^{e y} f_{e x}, \tag{1.16}
\end{equation*}
$$

(1.17)

$$
\nabla_{c} v_{b}=f_{c b}+h_{c b}^{x} u_{x}
$$

$$
\begin{equation*}
\nabla_{c} u^{x}=-f_{c}^{x}-h_{c e}^{x} v^{e} \tag{1.18}
\end{equation*}
$$

with the aid of (1.8) $\sim(1.10)$, where $h_{c b x}=h_{c b}{ }^{y} g_{y x}$ and $f^{a e}=f_{c}^{e} g^{c a}$.
When M^{n} is a hypersurface of $M^{2 m+1}$, (1.11) and (1.12) reduce to

$$
\left\{\begin{array}{l}
f_{c}^{e} f_{e}^{a}=-\delta_{c}^{a}+u_{c} u^{a}+v_{c} v^{a}, \\
f_{c}^{e} u_{e}=-\lambda v_{c}, v^{e} f_{e}^{a}=-\lambda u^{a}, \\
v^{e} u_{e}=0, \quad u_{e} u^{e}=1-\lambda^{2}, \\
g_{d e} f_{c}^{d} f_{b}^{e}=g_{c b}-u_{c} u_{b}-v_{c} v_{b}, \\
v_{a} v^{a}=1-\lambda^{2},
\end{array}\right.
$$

where we have put $f_{c}^{1^{*}}=u_{c}, u_{1^{*}}=u^{1^{*}}=\lambda$. These mean that the set $\left(f_{b}^{a}, g_{c b}, u_{b}\right.$ v_{b}, λ) defines the so-called (f, g, u, v, λ)-structure on $M^{2 m}$ ([2], [6]).

The aggregate $\left(f_{c}^{a}, g_{c b}, f_{c}^{x}, v_{c}, u^{x}\right)$ satisfying (1.11) and (1.12) is said to be antinormal if

$$
\begin{equation*}
h_{c}^{e x} f_{e}^{a}+f_{c}^{e} h_{e}^{a x}=0 \tag{1.19}
\end{equation*}
$$

In characterizing the submanifold, we shall use the following Theorem A ([1], [2]).
THFOREM A. Let $M^{2 i n}$ be a complete hypersurface with antinormal (f, g, u, $v, \lambda)$-structure of an odd-dimensional unit sphere $S^{2 m+1}(1)$. If the function λ does not vanish almost everywhere and the scalar curvature of $M^{2 m}$ is a constant, then $M^{2 m}$ is a great sphere $S^{2, n}(1)$ or a product of two spheres $S^{m}(1 / \sqrt{2}) \times S^{m}(1$ $(\sqrt{2})$.

2. Generic submanifolds with antinormal structure

Throughout this paper we assume that the induced structure satisfying (1.11) and (1.12) is antinormal. We then have from (1.19)

$$
\begin{equation*}
h_{c e}^{x} f_{b}^{e}=h_{i p e}^{x} f_{c .}^{e} . \tag{2.1}
\end{equation*}
$$

Transiccting (2.1) with f_{a}^{b} and the first relation of (1.11), we find

$$
h_{c e}^{x}\left(-\delta_{a}^{e}+f_{a}^{z} f_{z}^{e}+v_{a} v^{e}\right)=h_{b e}^{x} f_{c}^{e} f_{a}^{b},
$$

from which, taking the skew-symmetric part,

$$
\begin{equation*}
\left(h_{c e}^{x} f_{z}^{e}\right) f_{b}^{z}-\left(h_{b e}^{x} f_{z}^{e}\right) f_{c}^{z}+\left(h_{c e}^{" c} v^{e}\right) v_{b}-\left(h_{b e}^{x} v^{e}\right) v_{c}=0 \tag{2.2}
\end{equation*}
$$

If we transvect (2.2) with v^{b} and take account of (1.11) and (1.12), then we obtain

$$
\begin{equation*}
-\left(h_{b e}{ }^{x} v^{b} f_{z}^{e}\right) f_{c}^{z}+\left(1-A^{2}\right) h_{c e}^{x} v^{e}-\left(h_{d e}{ }^{x} v^{d} v^{e}\right) v_{c}=0, \tag{2.3}
\end{equation*}
$$

where $A^{2}=u_{x} u^{x}$, which transvect f_{y}^{c} and use (1.11),

$$
A^{2} h_{c e}^{x} v^{e} f_{y}^{c}=\left(h_{b e}^{x} v^{b} f_{z}^{e} u^{z}\right) u_{y} .
$$

Thus, we have from (2.3)

$$
\begin{equation*}
A^{2}\left(1-A^{2}\right) h_{c e}^{*} v^{e}=A^{2}\left(h_{d e}^{x} v^{d} v^{e}\right) v_{c}+\left(h_{b e}^{x} v^{b} f_{z}^{e} u u^{z}\right) u_{y} f_{c}^{y} . \tag{2.4}
\end{equation*}
$$

Now we suppose in the sequel that the function A does not vanish almost everywhere and $n \neq m$, then so does $A\left(1-A^{2}\right)$. In fact, if $1-A^{2}$ vanishes identically, then we see from (1.12) that $v_{c}=0$ and hence $f_{c b}=0$ because of (1.17). Thus we verify that

$$
0=f_{c b} f^{c b}=2(n-m)
$$

with the aid of (1.11) and (1.12). Therefore $A\left(1-A^{2}\right)$ is nonzero almost everywhere.
Consequently (2.4) implies

$$
\begin{equation*}
h_{c e}{ }^{x} v^{e}=B^{x} v_{c}+A^{x} u_{z} f_{c}^{z}, \tag{2.5}
\end{equation*}
$$

where we have put

$$
A^{x}=\left(h_{d e}^{x} v^{d} f_{z}^{e} u^{z}\right) / A^{2}\left(1-A^{2}\right), \quad B^{x}=\left(h_{d e}^{x} v^{d} v^{e}\right) /\left(1-A^{2}\right) .
$$

Substituting (2.5) into (2.2), we find

$$
\left(h_{c e}{ }^{x} f_{z}^{e}\right) f_{b}^{z}-\left(h_{b c}^{x} f_{z}^{e}\right) f_{c}^{z}+A^{x}\left(u_{z} f_{c}^{z} v_{b}-u_{z} f_{b}^{z} v_{c}\right)=0,
$$

from which, transvecting f_{y}^{b} and making use of (1.11),

$$
\begin{equation*}
h_{c e}{ }^{x} f_{y}^{e}-\left(h_{c e}^{x} f_{z}^{e} u^{z}\right) u_{y}-\left(h_{d e}^{x} f_{z}^{e} f_{y}^{d}\right) f_{c}^{z}-\left(1-A^{2}\right) A^{x} u_{y} v_{c}=0 . \tag{2.6}
\end{equation*}
$$

On the other hand. we have

$$
\begin{aligned}
h_{c e}^{x} f_{z}^{e} u^{z}=-h_{c e}{ }^{x} v^{a} f_{a}^{e}=-h_{a e}^{x} v^{a} f_{c}^{e} & =-\left(B^{x} v_{c}+A^{x} u_{y} f_{e}^{y}\right) f_{c}^{e} \\
& =-B^{x} u_{z} f_{c}^{z}+A^{2} A^{x} v_{c}
\end{aligned}
$$

with the help of (1.11), (2.1) and (2.5). Thus (2.6) reduces to

$$
\begin{equation*}
h_{c e}{ }^{x} f_{y}^{e}=Q_{y z}{ }^{x} f_{c}^{z}+A^{x} u_{y} v_{c}, \tag{2.7}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
Q_{y z}^{x}=h_{d e}^{x} f_{z}^{e} f_{y}^{d}-B^{x} u_{z} u_{y}, \tag{2.8}
\end{equation*}
$$

which implies

$$
Q_{y z}{ }^{x}=Q_{z y}{ }^{x} .
$$

Putting $Q_{y z x}=Q_{y z}^{w} g_{w x}$, we see from (2.7) that

$$
\begin{equation*}
\left(Q_{y z x}-Q_{x z y}\right) f_{c}^{z}+\left(A_{x} u_{y}-A_{y} u_{x}\right) v_{c}=0 \tag{2.9}
\end{equation*}
$$

because of (1.16).
Transvection v^{c} and f_{a}^{c} give respectively

$$
\begin{equation*}
A_{x} u_{y}-A_{y} u_{x}=0, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\left(Q_{y z z}-Q_{x z y}\right) u^{z}=0 \tag{2.11}
\end{equation*}
$$

because $1-A^{2}$ does not vanish almost everywhere.
Transvecting also (2.9) with $f_{w}{ }^{c}$ and using (1.11) and (2.11), we obtain $Q_{y z z}$ $=Q_{x z y^{*}}$. Hence $Q_{x y z}$ is symmertric for any index.
Transvecting (2.7) with f_{a}^{c} and taking account of (1.11), we find

$$
h_{c e}^{x} f_{y}^{e} f_{a}^{c}=-Q_{y z}{ }^{x} l^{z} v_{a}+A^{x} u_{y}\left(u_{z} f_{a}^{z}\right),
$$

from which, using (1.11), (2.1) and (2.5),

$$
\begin{equation*}
Q_{y z}{ }^{x} u^{z}+B^{x} u_{y}=0 . \tag{2.12}
\end{equation*}
$$

This implies

$$
\begin{equation*}
B_{x} u_{y}-B_{y} u_{x}=0 \tag{2.13}
\end{equation*}
$$

because $Q_{x y z}$ is symmetric for all indices.
A being nonzero almost everywhere, (2.10) and (2.13) give respectively

$$
\begin{equation*}
A^{x}=\beta u^{x}, \quad B^{x}=\alpha u^{x}, \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=A^{x} u_{x} / A^{2}, \alpha=B^{x} u_{x} / A^{2} \tag{2.15}
\end{equation*}
$$

Thus (2.5), (2.7) and (2.12) reduce respectively to

$$
\begin{equation*}
{h_{c e}}^{x} v^{e}=u^{x}\left(\alpha v_{c}+\beta u_{z} f_{c}^{z}\right), \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
h_{c e}^{x} f_{y}^{e}=Q_{y z}{ }^{x} f_{c}^{z}+\beta u^{x} u_{y} v_{c}, \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
Q_{y z}^{x} u^{z}=-\alpha u^{x} u_{y} . \tag{2.18}
\end{equation*}
$$

Transvecting (2.1) with $f^{c b}$ yields

$$
\begin{aligned}
0 & =h_{c e}{ }^{x}\left(-g^{c e}+f^{c z} f_{z}^{e}+v^{c} v^{e}\right) \\
& =-h^{x}+Q_{y z}{ }^{x}\left(g^{z y}-u^{z} u^{y}\right)+\alpha u^{x}\left(1-A^{2}\right) \\
& =-h^{x}+Q^{\tau}+\alpha u^{x}
\end{aligned}
$$

with the aid of (1.11) and (2.16) $\sim(2.18)$, where $h^{x}=g^{c b} h_{c b}{ }^{x}$ and $Q^{x}=g^{y z} Q_{y z}{ }^{x}$. Hence, it follows that

$$
\begin{equation*}
h^{x}=Q^{x}+\alpha u^{x} . \tag{2.19}
\end{equation*}
$$

We now assume that the connection induced in the normal bundle of M^{n} is flat, that is, $K_{d c y}{ }^{x}=0$. Then we have from (1.7)

$$
\begin{equation*}
h_{c e}^{x} h_{b y}^{e}=h_{b e}^{x} h_{c y}^{e} . \tag{2.20}
\end{equation*}
$$

Transvecting (2.20) with f_{z}^{b} and using (2.17), we get

$$
h_{c e}{ }^{x}\left(Q_{w y z} f^{e w}+\beta u_{y} u_{z} v^{o}\right)=h_{c y}^{e}\left(Q_{w z}{ }^{x} f_{e}^{w}+\beta u^{x} u_{z} v_{e}\right),
$$

from which, using (2.16) and (2.17),

$$
Q_{v y z}\left(Q_{v}^{w x} f_{c}^{v}+\beta u^{x} u^{w} v_{c}\right)+\alpha \beta u^{x} u_{y} u_{z} v_{c}=Q_{w z}^{x}\left(Q_{v y}^{w} f_{c}^{v}+\beta u^{v o} u_{y} v_{c}\right)+\alpha \beta u^{x} u_{y} u_{z} v_{c},
$$

or, using (2.18),

$$
\begin{equation*}
Q_{z} Q_{v}^{w x} f_{c}^{v}=Q_{w z}^{x} Q_{v y}^{w} f_{c}^{v} . \tag{2.21}
\end{equation*}
$$

Transvecting (2.21) with f_{a}^{c} and f_{u}^{c} and taking account of (1.11), we have respectively

$$
\begin{gathered}
Q_{w y z} Q_{v}^{w x}\left(u^{v} v_{a}\right)=Q_{w z}{ }^{x} Q_{v y}^{w}\left(u^{v} v_{a}\right), \\
Q_{w y z} Q_{v}^{w x}\left(\delta_{u}^{v}-u_{u} u^{v}\right)=Q_{w z}{ }^{x} Q_{v y}^{w}\left(\delta_{v}^{u}-u_{u}^{u} u^{v}\right) .
\end{gathered}
$$

The last two relationships give

$$
\begin{equation*}
Q_{w y z} Q_{v x}{ }^{w}=Q_{w z x} Q_{v y}{ }^{w} \tag{2.22}
\end{equation*}
$$

because $1-A^{2}$ does not vanish almost everywhere, which implies

$$
\begin{equation*}
Q_{y z x} Q^{y z x}=Q_{x} Q^{x} \tag{2.23}
\end{equation*}
$$

LEMMA 2.1. Let M^{n} be a generic submanifold of $S^{2 m+1}(1), \quad(n \neq m, n \neq m+1)$
whose normal connection is flat. If the induced structure on M^{n} is antinormal and the function $u_{x} u^{x}$ is nonzero almost everywhere. Then we have

$$
\begin{align*}
& h_{c e}^{x} v^{e}=\beta u^{x} u_{z} f_{c}^{z} \tag{2.24}\\
& Q_{y z}^{x} u^{z}=0, \quad h^{x}=Q^{x} . \tag{2.25}
\end{align*}
$$

PROOF. From (2.16) we have

$$
h_{c e}{ }^{x} v^{e} u_{x}=\alpha A^{2} v_{c}+\beta A^{2}\left(u_{x} f_{c}^{x}\right) .
$$

Differentiating this covariantly and substituting (1.14), (1.17) and (1.18), we obtain

$$
\begin{array}{r}
\left(\nabla_{d} h_{c e}^{x}\right) v^{e} u_{x}+h_{c}^{e x} u_{x}\left(f_{d e}+h_{d e}^{y} u_{y}\right)-h_{c e}^{x} v^{e}\left(f_{d x}+h_{d a x} v^{a}\right)=\nabla_{d}\left(\alpha A^{2}\right) v_{c}+\nabla_{d}\left(\beta A^{2}\right) u_{x} f_{c}^{x} \\
+\alpha A^{2}\left(f_{d c}+h_{d c}^{x} u_{x}^{x}\right)-\beta A^{2} f_{c}^{x}\left(f_{d x}+h_{d e x} v^{e}\right)+\beta A^{2} u_{x}\left(g_{d c} u^{x}+h_{d e}^{x} f_{c}^{e}\right),
\end{array}
$$

from which, taking the skew-symmetric part and using (2.16) and (2.20),
(2.26)

$$
\begin{array}{r}
\nabla_{d}\left(\alpha A^{2}\right) v_{c}-\nabla_{c}\left(\alpha A^{2}\right) v_{d}+\nabla_{d}\left(\beta A^{2}\right) u_{x} f_{c}^{x}-\nabla_{c}\left(\beta A^{2}\right) u_{x} f_{d}^{x}+2 \alpha A^{2} f_{d c} \\
+\alpha\left(\beta A^{2}+1\right)\left(u_{x} f_{d}^{x} v_{c}-u_{x} f_{c}^{x} v_{d}\right)=0
\end{array}
$$

with the aid of (1.6) and (2.1). If we transvect (2.26) with v^{c} and take account of (1.11) and (1.12), we get
(2.27) $\left(1-A^{2}\right) \nabla_{d}\left(\alpha A^{2}\right)=v^{e} \nabla_{e}\left(\alpha A^{2}\right) v_{d}+\left\{v^{e} \nabla_{e}\left(\beta A^{2}\right)\right.$

$$
\left.-2 \alpha A^{2}-\alpha\left(\beta A^{2}+1\right)\left(1-A^{2}\right)\right\} u_{x} f_{d}^{x}
$$

Transvecting also (2.26) with f_{z}^{c} and using (1.11), we find

$$
\begin{aligned}
\left(1-A^{2}\right) \nabla_{d}\left(\beta A^{2}\right) u_{z}=f_{z}^{e} \nabla_{e}\left(\alpha A^{2}\right) v_{d}+f_{z}^{e} \nabla_{e}\left(\beta A^{2}\right) u_{x} f_{d}^{x} & +2 \alpha A^{2} u_{z} v_{d} \\
& +\alpha\left(\beta A^{2}+1\right)\left(1-A^{2}\right) u_{z} v_{d} .
\end{aligned}
$$

Hence, the last two equations give

$$
\begin{equation*}
A^{2}\left(1-A^{2}\right) \nabla_{d}\left(\beta A^{2}\right)=A^{2} v^{e} \nabla_{e}\left(\beta A^{2}\right) v_{d}+u^{z} f_{z}^{e} \nabla_{e}\left(\beta A^{2}\right) u_{x} f_{d}^{x} \tag{2.28}
\end{equation*}
$$

Substituting (2.27) and (2.28) into (2.26), we get

$$
\alpha\left\{\left(1-A^{2}\right) f_{d c}-\left(u_{x} f_{d}^{x} v_{c}-u_{x} f_{c}^{x} v_{d}\right)\right\}=0
$$

because $A\left(1-A^{2}\right)$ does not vanish almost everywhere, from which, transvecting $f^{d c}$ and making use of (1.11) and (1.12),

$$
\alpha\left\{n-(2 m+1-n)+A^{2}-1+A^{2}\right\}+2 \alpha u_{x} u_{y}\left(g^{x y}-u^{x} u^{y}\right)=0,
$$ that is, $\alpha(n-m-1)=0$. Since $n \neq m+1$, we have $\alpha=0$. Therefore, (2.16), (2.18) and (2.19) reduce to (2.24) and (2.25).

3. Minimal generic submanifolds with antinormal structure

In this section we consider a minimal generic submanifold M^{n} of an odddimensional unit sphere $S^{2 m+1}(1)$.

First of all we prove
LEMMA 3.1. Let M^{n} be a minimal generic submanifold of $S^{2 n+1}(1)$, ($n \neq m$, $n \neq m+1$) whose normal connection is flat. If the induced structure on M^{n} is antinormal and the function A is nonzero almost everywhere. Then we have

$$
\begin{align*}
\left(1-A^{2}\right) h_{c e x} h_{b y}^{c}= & u_{x} u_{y}\left\{\beta\left(1-A^{2}\right)\left(g_{c b}-f_{c}^{z} f_{z b}\right)\right. \tag{3.1}\\
& \left.+\beta(\beta-1)\left(u_{z} f_{b}^{z}\right)\left(u_{w} f_{c}^{w}\right)+\beta\left(\beta A^{2}-1\right) v_{c} v_{b}\right\} .
\end{align*}
$$

PROOF. Since M^{n} is minimal, we see from the second equation of (2.25) that $Q^{x}=0$. Thus (2.17) becomes

$$
\begin{equation*}
h_{c e x} f_{y}^{e}=\beta u_{x} u_{y} v_{c} \tag{3.2}
\end{equation*}
$$

with the aid of (2.23). Differentiating (3.2) covariantly and substituting (1.14), (1.17) and (1.18), we find

$$
\begin{array}{r}
\left(\nabla_{d} h_{c e x}\right) f_{y}^{e}+h_{c x}^{e}\left(g_{d e} u_{y}+h_{d a y} f_{e}^{a}\right)=\left(\nabla_{d} \beta\right) u_{x} u_{y} v_{c}-\beta u_{y} v_{c}\left(f_{d x}+\beta u_{x} u_{z} f_{d}^{z}\right) \\
-\beta u_{x} v_{c}\left(f_{d y}+\beta u_{y} u_{z} f_{d}^{z}\right)+\beta u_{x} u_{y}\left(f_{d c}+h_{d c z} u^{z}\right)
\end{array}
$$

because of (2.24), from which, taking the skew-symmetric part with respect to d and c and using (1.6),

$$
\begin{align*}
& 2 h_{c e}^{x} h_{d a y} f_{e}^{a}=\left\{\left(\nabla_{d} \beta\right) v_{c}-\left(\nabla_{c} \beta\right) v_{d}\right\} u_{x} u_{y}+\beta\left\{v_{d}\left(u_{x} f_{c y}+u_{y} f_{c x}\right)\right. \tag{3.3}\\
& \left.\quad-v_{c}\left(u_{x} f_{d y}+u_{y} f_{d x}\right)\right\}+2 \beta f_{d c} u_{x} u_{y}-2 \beta^{2}\left(v_{c} u_{z} f_{d}^{z}-v_{d} u_{z} f_{c}^{z}\right) u_{x} u_{y} .
\end{align*}
$$

If we transvect (3.3) with v^{c} and take account of (1.11), (2.24) and (3.2), we obtain

$$
\begin{align*}
&\left(1-A^{2}\right)\left(\nabla_{d} \beta\right) u_{x} u_{y}=\left(v^{e} \nabla_{e} \beta\right) v_{d} u_{x} u_{y}+\beta\left(1-A^{2}\right)\left(u_{x} f_{d y}+u_{y} f_{d x}\right) \tag{3.4}\\
&+2 \beta(\beta-1)\left(u_{z} f_{d}^{z}\right) u_{x} u_{y}
\end{align*}
$$

Substitution the above equation into (3.3) yields

$$
\begin{equation*}
\left(1-A^{2}\right) h_{c x}^{e} h_{d a y} f_{e}^{a}=u_{x} u_{y}\left\{\beta\left(\beta A^{2}-1\right)\left(v_{c} u_{z} f_{d}^{z}-v_{d} u_{z} f_{c}^{z}\right)+\beta\left(1-A^{2}\right) f_{d c} u_{x} u_{y}\right\} \tag{3.5}
\end{equation*}
$$

Transvecting (3.5) with f_{b}^{d} and making use of (1.11) and (2.1), we get

$$
\begin{array}{r}
\left(1-A^{2}\right) h_{c x}^{e} h_{a e y}\left(-\delta_{b}^{a}+f_{b}^{z} f_{z}^{a}+v_{b} v^{a}\right)=-\beta\left(\beta A^{2}-1\right)\left\{A^{2} v_{c} v_{b}+\left(u_{z} f_{c}^{z}\right)\left(u_{w} f_{b}^{w}\right)\right\} u_{x} u_{y} \\
+\beta\left(1-A^{2}\right)\left(-g_{c b}+f_{c}^{z} f_{z b}+v_{c} v_{b}\right) u_{x} u_{y}
\end{array}
$$

or, using (2.24) and (3.2),

$$
\begin{aligned}
& \left(1-A^{2}\right)\left\{-h_{c x}^{e} h_{j z y}+\beta^{2} u_{x} u_{y}\left(u_{z} f_{c}^{z}\right)\left(u_{w} f_{b}^{w}\right)+\beta^{2} A^{2} u_{x} u_{y} v_{c} v_{b}\right\} \\
& \quad=-\beta\left(\beta A^{2}-1\right)\left\{A^{2} v_{c} v_{b}+\left(u_{z} f_{c}^{z}\right)\left(u_{w} f_{b}^{w}\right)\right\} u_{x} u_{y}+\beta\left(1-A^{2}\right)\left(-g_{c b}+f_{c}^{z} f_{z b}+v_{c} v_{b}\right) u_{y} u_{y}
\end{aligned}
$$

Thereby, (3.1) perived from this. This completes the proof of the lemma.
From (3.1) we have

$$
\begin{align*}
&\left(1-A^{2}\right) h_{c e x} h_{b}^{e x}=\beta A^{2}\left\{\left(1-A^{2}\right)\left(g_{c b}-f_{c}^{z} f_{z b}\right)\right. \tag{3.6}\\
&\left.+(\beta-1)\left(u_{x} f_{c}^{x}\right)\left(u_{y} f_{b}^{y}\right)+\left(\beta A^{2}-1\right) v_{c} v_{b}\right\}
\end{align*}
$$

Since we have

$$
g^{c b}\left(g_{c b}-f_{c}^{z} f_{b z}\right)=2 n-2 m-1+A^{2},\left(u_{x} f_{c}^{x}\right)\left(u_{y} f^{c y}\right)=A^{2}\left(1-A^{2}\right)
$$

(3.6) implies

$$
\begin{equation*}
h_{c b}^{x} h_{x}^{c b}=2 \beta A^{2}\left(n-m-1+\beta A^{2}\right) \tag{3.7}
\end{equation*}
$$

LEMMA 3.2. Under the same assumptions as those stated in Lemma 3.1, if the scalar curvature of M^{n} is a constant, then we have

$$
\begin{equation*}
\beta A^{2}\left(\beta A^{2}-1\right)=0 \tag{3.8}
\end{equation*}
$$

PROOF. We see from (1.5) that

$$
\begin{equation*}
K_{c}^{b}=\left(n-1 ; g_{c b}+h_{c}^{e x} h_{b e x}\right. \tag{3.9}
\end{equation*}
$$

because M^{n} is minimal, where $K_{c b}$ is the Ricci tensor of M^{n}. Thus, the scalar curvature K of M^{n} is given by

$$
K=n(n-1)-h_{c b} h_{x^{*}}^{c b}
$$

From this fact and (3.7) we see that

$$
K=n(n-1)-2 r(n-m-1+r)
$$

where $\gamma=\beta A^{2}$, Since K is a constant, by differentiating covariantly, we find

$$
(n-m+2 \gamma) \nabla_{c} \gamma=0
$$

which means that γ is a constant on M^{n}.

On the other hand, we have from (3.2)

$$
h_{c e}^{x} f_{x}^{e}=\gamma v_{c^{*}}
$$

Differentiating this covariantly and using (1.14) and (1.17), we get

$$
\left(\nabla_{d} h_{c e}^{x}\right) f_{x}^{e}+h_{c}^{e x}\left(g_{d e} u_{x}+h_{d a x} f_{e}^{a}\right)=\gamma\left(f_{d c}+h_{d c}^{x} u_{x}\right)
$$

because γ is a constant, from which, taking the skew-symmetric part and using (1.6),

$$
h_{c e}{ }^{x} h_{d a x} f_{a}^{e}=\gamma f_{d c}
$$

Tranvection v^{c} yields $\gamma^{2} u_{x} f_{d}{ }^{x}=\gamma u_{x} f_{d}{ }^{x}$ with the aid of (2.24) and (3.2), which gives $\gamma(\gamma-1)=0$ because $A\left(1-A^{2}\right)$ does not vanish almost everywhere. Hence the lemma is proved.

Finally we prove
THEOREM 3.3. Let M^{n} be a complete and minimal generic submanifold of an odd-dimensional unit sphere $S^{2 m+1}(1),(n \neq m, n \neq m+1)$ whose normal connection is flat. If the induced structure on M^{n} is antinormal and the scalar curvature of M^{n} is a constant, then M^{n} is a great spere S^{n} or a product of two spheres $S^{m}(1 / \sqrt{2}) \times S^{m}(1 / \sqrt{2})$ provided that the function $u^{x} u_{x}$ does not vanish almost everywhere.

PROOF. If the case in which $\beta A^{2}=0$, then we see from (3.7) that $h_{c b}{ }^{x}=0$. By completeness of M^{n}, M^{n} is a great sphere S^{n}.

From Lemma 3.2 it remains the case in which $\beta A^{2}=1$. In this case, (3.1) reduces to

$$
\begin{equation*}
h_{c e x} h_{b y}^{e}=(\beta-1) /\left(1-A^{2}\right) u_{z} u_{y}\left\{g_{c b}-f_{c}^{z} f_{z b}+\beta\left(u_{z} f_{c}^{z}\right)\left(u_{w} f_{b}^{w}\right)\right\}, \tag{3.10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
h_{c b}^{x} h_{x}^{c b}=2(n-m) \tag{3.11}
\end{equation*}
$$

On the other hand, from the Ricci identity

$$
\nabla_{d} \nabla_{c} h_{b z}^{x}-\nabla_{c} \nabla_{d} h_{b a}^{x}=-K_{d c b}{ }^{e} h_{a e}^{x}-K_{d c a}{ }^{e} h_{b e}^{x}
$$

we have

$$
\begin{equation*}
\left(g^{d a} \nabla_{d} \nabla_{a} h_{c b}^{x}\right) h_{x}^{c b}=K_{c e} h_{b}^{e y} h_{y}^{c b}-K_{d c b a} h^{d a y} h_{y}^{c b}, \tag{3.12}
\end{equation*}
$$

where $K_{d c b a}=K_{d c b}{ }^{e} g_{e a}$.
From (1.5) we find

By U-Hang Ki

$$
K_{d c b a} h^{d a y} h_{y}^{c b}=-h_{c b x} h^{c b x}+\left(h_{d a x} h_{y}^{d a}\right)\left(h_{c b}^{x} h^{c b y}\right)-\left(h_{c a x} h_{y}^{c b}\right)\left(h_{d b}^{x} h^{d a y}\right)
$$

from which, using (2.24), (3.2), (3.8) and (3.10),

$$
\begin{equation*}
K_{d c b a} h^{d a y} \dot{n}_{y}^{c j}=4(n-m)(n-m-1) \tag{3.13}
\end{equation*}
$$

We have from (3.9) and (3.10)

$$
K_{c b}=(n-2) g_{c \dot{b}}+f_{c}^{z} f_{b z}-\beta\left(u_{x} f_{c}^{x}\right)\left(u_{y} f_{b}^{y}\right)
$$

Transvection $h_{a}^{b y} h^{c a}{ }_{y}$ gives

$$
\begin{equation*}
K_{c e} h_{\dot{o}}^{e y} h_{y}^{c b}=2(n-2)(n-m) \tag{3.14}
\end{equation*}
$$

with the aid of (2.24), (3.2), (3.10) and the fact that $\beta A^{2}=1$.
Substituting (3.12) into the identity

$$
\begin{equation*}
\frac{1}{2} \Delta\left(h_{c b}^{x} h_{x}^{c b}\right)=g^{d a}\left(\nabla_{d} \nabla_{a} h_{c b}^{x}\right) h_{x}^{c b}+\left\|\nabla_{d} h_{c b}^{x}\right\|^{2} \tag{3.15}
\end{equation*}
$$

and taking account of (3.11), (3.13) and (3.14), we obtain

$$
2(n-m)(2 m-n)+\left\|\nabla_{d} h_{c b}^{x}\right\|^{2}=0
$$

where $\Delta=g^{c b} \nabla_{c} \nabla_{b^{\bullet}}$ This implies that $2 m=n$ and $\nabla_{d} h_{c b}{ }^{x}=0$ because of $n \neq m$. The first assertion means that M^{n} is a hypersurfaces of $S^{2 m+1}(1)$. Thus, according to Therorem A, M^{n} is $S^{m}(1 / \sqrt{2}) \times S^{m}(1 / \sqrt{2})$. Therefore the theorem is proved.

Kyungpook University
Taegu, Korea

BIBLIOGRAPHY

[1] Blair, D.E., G.D. Ludden and K. Yano, Hypersurfaces of an odd-dimensional' sphere, Jour. Diff. Geo., 5 (1971), 479-486.
[2] Ishihara, S. and U-Hang Ki, Complete Riemannian manifolds with (f, g, u, v, λ)-structure, Jour. Diff. Geo., 8 (1973), 541-554.
[3] Kenmotsu, K., Some remarks on minimal submanifolds, Tòhoku Math. J., 22 (1970), 240-248.
[4] Ki, U-Hang and Y.H. Kim, Generic submanifolds of an odd-dimensional sphere, to appear.
[5] Ki, U-Hang and J.S.Pak, Generic submanifolds of an even-dimensional Euclidean space, to appear in Jour. Diff. Geo.
[6] Ki, U-Hang, J.S.Pak and Y.-W. Choe, Compact hypersuifaces with antinorinal (f)
$g, u, v, \lambda)$-structure in an odd-dimensional sphere, J. of Korean Math. Soc., 12 (1975), 63-70.
[7] Ki, U-Hang, J.S. Pak and Y.H. Kim, Generic submanifolds of a complex projective space with parallel mean curvature vector, to appear in Kodai Math. J.
[8] Okumura M., Submanifolds of real codimension of a complex projective space, Atti della Accademia Nazionale dei Lincei, 4 (1975), 544-555.
[9] Pak, J. S., Note on anti-holomorphic submanifolds of real codimension of a complex projective space, Kyungpook Math. Jour. 20 (1980), 59-76.
[10] Yano, K. and M. Kon, Generic submanifolds, to appear in Annali di Mat.
[11] Yano, K. and M. Kon, Generic submanifolds with semidefinite second fundamental form of a complex projective space, to appear in Kyungpook Math. Jour.

