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0. Introduction

Recently, several authors have studied generic (anti-holomorphic) submanifold

of a Kaehlerian manifold ([5], [7], [9], [10],_ (11], ctc.) |
On the other hand, the author in the previous paper ([4]) studied a generic

submanifold of an odd-dimensional unit sphere under the condition that structure
tensor f induced on the submanifold is normal. |

The purpose of the present paper is to study a minimal generic submanifold
of an odd-dimensional unit sphere whose induced structure on the submanifold
is antinormal (see 1).

In 1, we recall fundamental properties and structure equations for a generic
submanifold immersed in a Sasakian manifold and define the structure tensor f
on the submanifold to be antinormal. - L

In 2, we investigate a generic submanifold with antinormal ‘structure of an
odd-dimensional sphcre whose normal connection is f{lat. ' |

In the last 3, we characterize minimal generic submanifolds of aniodd—drimem
sional sphere under certain conditions. o

1. Preliminaries

o+ 1
Let IMC”*""HL

be a (2m+1)-dimensional Sasa.kian mantfold covered by a system
of coordinate neighborhoods {U, xk} and (th, GJ.I.,'F") the' set of structure ten-

2m+1 : . " : . . .
sors of M~ , where, here and in the sequel, the indices k, 7, ¢, - run
over the range {17, 2/, ---, (2m-+1)"}. Then we have

(1.1) F'F'=-0;+F.F', FF'=0, F/F =0, -
4 l ~ § - T
FIFZ]., FJ Fz' Gisszf—Fij’ ' o
where Fz-:GﬂFt and
h_ . h A o oph sk
(1.2) V.F'=F ', VF'=-G,F +0,F,
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VJ. denoting the operator of covariant differentiation with respect to G i

Let M" be an n-dimensional Riemannian manifold isometrically immersed im
M2m+1 by the immersion 7 @ M M and identify #(M") with M". In terms
of local coordinates (¥°) of M" and (") of M*"*! the immersion 7 is locally

expressed by xh=xh (»"), where, here and in the sequel the indices e, b C, **~

run over the range {1, 2, -, #n}. If we put B, —3 :r d, 3/3y, then B are
linearly independent vectors of M tangent to M. Denoting by g,, the fun-

damental metric tensor of M ”, we then have
ho
g,=B. B, G,

because the immersion 1S isometric.

We denote by C Ih 2m-+1—n mutually orthogonal unit normals of M~ (the in-

dices #, v, w, x, ¥ and z run over the range {1%, -, @Cm+1—#n)*}. Therefore,
denoting by VC the operator of van der Waerden-Bortolotti covariant differen-

tiation with respect to the Christofel symbols { cab} formed with g, we have

equations of Gauss and Weingarten for M"

(1' 3) VcBbhz hcbxcxh’
(1.4) VC'=-h’ B/

respectively, where h * are the second fundamental tensors with respect to the

normals C and h hcby gangy, g, being the metric tensor of the normal

bundle of M" given by gy =G.C’° C and (gcb):( cb)_'1

j1x

2m+1 .

If the ambient manifold M is a (2m--1)-dimensional unit sphere ;o 1(1),..

the equations of Gauss, Codazzi and Ricci for M~ are respectively given by

a /4 a ax ax
(1' 5) chb =5dgcb_5c gdb+hd hcbx_hc kdb:r’
(1.6) thcbx — Vchdbx —
b 4 X e X e
(1.7) Kd’cy =hwk”—kmE kdy,
where K deh “and K 4c yx are the Riemannian Christoffel curva, e tensor of M"

and that of the connection induced in the normal bundle respectively.
Now we consider the submanifold M" of M“"*! which satisfy

Np(M™) LF(N ,(M"))
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at cach point PeM", where NP(M’T') denotes the normal space at P. 'Such a
submanifold is called a generic submanifold (an anti-holomorphic submam’fold),
([4), (8], [10]) ’ : '
From now on we consider in the sequel generic submanifolds immersed in a
Sasakian manifold M>"*. Then we can put in each coordinate neighborhood

(1.8) F'B'=f’B"'-f*C”,
(1.9) F'c'=f’B),
(1.10) Fh-fvEB; -+ uICIh,

where fcﬂ is a tensor field of type (1,1) defined on M", fcx a local 1-form for
each fixed index x, v" a vector field, «" a function for each fixed index x, and

a L,y ac
[ =18 &,

Applying F to (1.8) and (1.9) respectively, and using (1.1) and these equa-
tions, we easily find that ({4])

f cef : - 5: +f cxf :+Ucvﬂ’

e X x
fn fe =-—U62£ ?
Yy _ o) Y
Fof7=0"—u_u’,
(1' 11) 1 xXv e xx X
e 0 a
Ufe — U x?
€, X
vf, =0,
d .6 x
‘“gdcfcj; _'gcb—fc fxb—vcvb'

Since FrFt=1, we have from (1.10)

(1.12) v v +up =1

Putting f,,=f. g, f.. =f,,ygyx.. then we easily see that f,,=—f,., f.,=f,. be-
cause of (1.11).

Differentiating (1.8), (1.9) and (1.10) covariantly and using (1.1)~(1.4), we
have respectively (see [4])

(1.13) V, f!,fz = —gcbva+c)‘:vb—l—hc;f: - hcax f;.
(1.14) V. f, =g, u+h, f,,

(1.15) V.r'=0"u+n, 1%,
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€ £y __yq €Y
| (1- 16) hc xfe _hc f;x’
| | x
(1.17) chb= TR, %,
b X X @
(1.18) Vu=—f —h,v

with the a'id of (1.8)~(1.10), where kcbx=kcbygyx and f¥=f ggm.

c

When M" is a hypersurface of M2m+1, (1.11) and (1.12) reduce to
'ff:f ; =~—0 :+ zzcua—l— vcva,

f:-.zzgz — v, v'f ::- — A",

| vy =0, uﬂue: 1 —22,

d ~€
gdefc fb "gcb_uc Hb"vcvb’

a 2
K =1—-A",

where we have put f:*:u{_, nl*:ul*:?ﬂ. These mean that the set (fba, £.ps Uy
v,, A) defines the so-called (f, g, #, v, A)-structure on M ([2], [6]).

The aggregate (ffa, g p fcx, vc,ux) satisfying (1.11) and (1.12) is said to be

antinormal if
EX . 11 e 2x
(1.19) n. fe —l—fc ke =Q.

In characterizing the submanifold, we shall use the following Theorem A

C{1], (2]).

THEOREM A. ZLet M~" be q complete hypersurface with antinormal (f, g, u,
2m+](1)._1 f the function A
does not vanish almost everywhere and lhe scelar curvalure of Mzm 1s a constant,
tkg?z M™ is a greal sphere Szm(l) or @ product of two spheres S”(1// )X S
/2 ).

v, A)-structure of an odd-dimensional unit sphere S

. 4. Generic submanifolds with antinormal structure

Throughout this paper we assume that the induced structure satisfying (1. 11)
and (1.12) is antinormal. We then have from (1.19) Co |

X pe o€
(2.1 | 7o fb :kf}e fc,'

Transvecting (2.1) with ,fqb and the {irst relation of (1.11), we find
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L e Z, € e ZpCab
kce (—aa +fafz +vav )=hbefcfa ’
from which, taking the skew-symmetric part,
(2' 2) (kcexf :) f bz — (kbexf :) f cz T (kc:z”g) vb o (hb:ae) z}c =0.

If we transvect (2.2) with " and take account of (1.11) and (1.12), then we
obtain

b 2 d
(2.3) —Chy, v+ A= ADR, v~ (kv 0o, =0,
where Azzzzxzr:x, which transvect f; and use (1.11),
2
A hr;vef;z(hb;vb ;uz)s&y .
Thus, we have from (2.3)
2.4)  A'(U=ADK, = A7, 0 0 Ay, [ e f.

Now we suppose in the seguel that the function A does not vanish almost

everywhere and n>m, then so does A(l—Ag). In fact, if 1—-A2 vanishes iden-
tically, then we see from (1.12) that »,=0 and hence f_,=0 because of (1.17).

Thus we verify that
0=F£,,f*=2(n—m)
with the aid of (1.11) and (1.12). Therefore A(I—Az) is nonzero almost every-

where.

Consequently (2.4) implies
(2.5) h :veszvc—]-szaz fz,

¢

where we have put
A= (kd:vdf:uz)/flz(l — Az), B = (kd:vdvf)/(l — Az).
Substituting (2.5) into (2.2), we find
(kc.:f : )f bz_ (kb:f :)f :'{'Ax(”z f cz”b" u,f, bzvc) =0,

from which, transvecting fyb and making use of (1.11),

(2.6) by £ =, futu — (S f SO~ (1= AD A% =0,

Z

On the other hand. we have
Xp€ 2T T a.e I ape X E? Y\,
R, f,u =—=h v f, =—h v f, =—(B v,+4 zayfg )f,

| X z 2 WX
=~B wf,+A A,
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with the help of (1.11), (2.1) and (2.5). Thus (Z.6) reduces to

X e X 2 X
(2.7) k., fy =Qyz f.o+A %0,
where we have put
x X € ~d X
(2.8) Qyz =h,, f, fy ~-B %1,
which implies
X%
Qy: =Ry -

Putting QyﬂzQyzwgm, we see from (2.7) that

4
(2.9) Q,,,~Q,,, ), +(Aux,~Aux ) v =0
because of (1.16).
Transvection »° and f; give respectively

(2.10) sz::y — A u_ =0,

Y

(2.11) (Q,,.— Q)% =0

because 1—-A2 does not vanish almost everywhere.
Transvecting also (2.9) with f,° and using (1.11) and (2.11), we obtain Q.

:szy' Hence Qxyz 1s symmertric for any indeX.
Transvecting (2.7) with f: and taking account of (1.11), we find
X € o C X Z x Z
k., fy fa -—-Qyz wv, +4 fcy(zazfa ),
{rom which, using (1.11), (2.1) and (2.5),

£ 2 X _
(2.12) Qyz w +B zzy—-O.
This implies
(2.13) Bu,—Bu, =0
because Q,,, is symmetric for all indices.

A being nonzero almost everywhere, (2.10) and (2.13) give respectively

(2.14) A* =g8d”, B =ou’,
where
(2. 15) B=A"u /A, a=Bu/A"

Thus (2.5), (2.7) and (2.12) reduce respectively to
(2.16) B v =u (av_+Bu,f5),
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b B'__ X 4 b 4
(2.17) k., fy —Qyz f. +Bu “ 0,
xz_ %
(2.18) Q yr X =0 U

Transvecting (2.1) with fcb yields
x €8 , 02 a8 £ e
O=h,, (—g +f°f, +vov)
— —kx+Qy:(gEy—uzuy)+a'ux(l—AZ)

=—h"+Q +au

with the aid of (1.11) and (2.16)~(2.18), where h*=g"h," and Q"=¢"Q ".
Hence, it follows that

(2.19) =0 +au’.

We now assume that the connection induced in the normal bundle of M is
flat, that is, ch:=0. Then wea have from (1.7)

Xy € 4 Xy 8
(2. 20) By, =k

Transvecting (2.20) with f: and using (2.17), we get
X W 2 e X o b
hce (wazf +8 ”yﬁzv )zkt‘ yCsz f e +5 t th'l)e),
from which, using (2.16) and (2.17),
waz (vax f: —I—‘Buxz_cwv c) —l—chzcx%yzczz}c =Qw; (Qﬂyw f: -+ 535'025 yv c) -+ aﬁz&xuyuzvc,
or, using (2.18),
wx v X W AT
(2.21) Q, Q r=9.9, /.-

Transvecting (2.21) with f ; and f: and taking account of (1.11), we have

respectively

Q,,Q, (w)=Q,'Q,"(«),
wazQ :”x(a: - uu“ﬂ) = szxQﬂ yw (0 :‘ - “u“u) ’

The last two relationships give

W i
(2.22) wazQﬂx =szvay
because 1—A4% does not vanish almost everywhere, which implies
(2.23) Q.2 =QQ.

LEMMA 2.1, Let M" be a generic submanifold of S+, (nxm, nxm+1)
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whose normal connection is flat. If the induced structure on M is antinormal

and the funciion uxux 1s nonzero almost everywhere. Then we have
(2.24) kﬁngg =Buxuz S :,

(2.25) Q

X Z X b
gz ¥ =0, h =Q.
PROOF. From (2.16) we have
X e 2 2 X
r, vu=aAv LA (u f).

Differentiating this covariantly and substituting (1.14), (1.17) and (1.18), we
obtain

(thch)veux—l—h:xﬂx(fde-l—kd:uy) —h_ 0 (f, +h va)=Vd(aA2)vc+Vd(5A2)zaxf;

dax
2 2 .x
+a A°(f, thy )~ BA” £ (F, +h,, o) +BA% (g, 4" +h, D,
from which, taking the skew-symmetric part and using (2.16) and (2. 20),
2 2
(2.26) V(@A ~V (@A, +V (BADu £~V (BADu f, +20A’F,
+a(BA + D, f [ v, —u, £ 0 )=0

with the aid of (1.6) and (2.1). If we transvect (2.26) with »° and take
account of (1.11) and (1.12), we get

2.27) (1— AV, (@A) =0V (@ADv,+ vV (B4
~20 A"~ a(BA*+ D(1— AD}u, £
Transvecting also (2.26) with f: and using (1.11), we f{ind
(- AV (BA®u, =F N (Ao, 41V (BADu, f [ +20A°u 0,

+a(5A2—l— 1)(1 —Az)uzz:’d.
Hence, the last two 'equations give
(2.28) Az( 1— Az)V p (5A2) = A%’V e(ﬁAz) v, 2" f:V e(‘BAz)u v dx.
Substituting (2.27) and (2.28) into (2.26), we get
oa{(1=AD f,,— @ v, f [v )} =0

because A(l-—Az) does not vanish almost everywhere, from which, transvecting
fdc and making use of (1.11) and (1.12),

aln—(Cm+1-n)+A4°—1+ A%} —|—2a'uxuy(gxy—uxuy) =0,
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that is, a(z—m—1)=0. Since zxm+1, we have a=0. Therefore, (2.16), (2.18)
and (2.19) reduce to (2.24) and (2.25). |

3. Minimal generic submanifolds with antinormal structure

In this section we consider a minimal generic submanifold M of an odd-

. : . 2im+1
dimensional unit sphere S " (1).
First of all we prove

LEMMA 3.1.- Let M" be a minimal generic submanifold of Sz’"“(l), (nxxm,
nxm-+1) whose normal connection is flat. If the induced structure on M" is
antinormal and the function A is nonzero almost everywhere. Then we have

3.1 A=Ak, k) =uu (BU-AD g, 1. f,)

+B8B=1)(u, £, £ ) +BBA = 1)v v}

PROOF. Since M is minimal, we see from the second equation of (2.25)
that Q*=0. Thus (2.17) becomes

¢
(3.2) R, fy ::,82&3:15},06

with the aid of (2.23). Differentiating (8.2) covariantly and substituting (1.14),
(L. 17) and (1.18), we find

(V bk, )f;—khcex(g oy Tl £H=( By —pBuy (f, +puu.f D)

X'y €
'—5uxvf(fdy+5uy2¢zf;)—I—ﬁuxuy( fdc—l—hdczuz)
because of (2.24), from which, taking the skew-symmetric part with respect

to d and ¢ and using (1.6),
(3.3) 2h, 230y £, ={(V B, - VeBvyhuu,+Blo,(u, [, +u f)
—Z’c(“;fdy'["”y fdx)} +25fdcaxwy—252(vcuz ,}"d"‘s—-z,rd:uzz f:)zzxuy.

If we transvect (3.3) with »" and take account of (1.11), (2.24) and (3.2),
we obtain

(3.4) (1= AD(V Bu g, =0V v up,+BU—- A (w, f, +u,fy)
+28(B—1)(w, fDup,.
Substitution the above equation into (3.3) yields

(3.5 (1=AD0°h,, fi=up (BBA =~ D(ven, [ —v 0, f,)+BU-ADF um ).
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Transvecting (3.5) with fbd and making use of (1.11) and (2.1), we get

A=AD0°h (=0 +F f +0,0°)==BBA - D{A% p,+Cu, £, D} u

¢ x aey

+B(1= A~ gy + I, fytouu
or, using (2.24) and (3.2),
(1 —Ag) [-h°h. —}-5226;265,(&2 f:)(zzw fbw) —l—ﬁgAzztxuyvcvb}

c x ' ozy
— —5(,8A2 —1) {szcvb—i— (u, fcz) (%, fbw)} %xﬂy“l‘ﬁ(l - Az)(_gcb'l"fczfzb'l'”c”b)”!‘uf

Thereby, (3.1) Perived from this. This completes the proof of the lemma.
From (3.1) we have

3.6)  (1-ADn,h T =BA (1A (g ,~F )

+(B=1), £, )+ (BA" - Do},
Since we have
g (g =1 fr)=2n—-2m—1+A% (u fD(u, f?)=4"(1-4%,
(3.6) implies
(3.7 h,h” =2BA%(n—m—1+84°).

X

LEMMA 3.2. Umnder the same assumptions as those stated in Lemma 3.1, if

n .
lhe scalar curvalure of M~ is a constant, then we have

(3.8) BA°(BA*—1)=0.
PROOF. We see from (1.5) that

h ex
(3.9) ch:(n_l"gcb—l—hc hbex

because M is minimal, where K . 18 the Ricci tensor of M " Thus, the scalar
curvature K of M" is given by
x,ch
K:n(n—l)—hcb h,.
From this fact and (3.7) we see that
K=n(n-1)=-2r(n—m-—147)

where 7=,BA2, Since K is a constant, by differentiating covariantly, we
find
(n—m+2r)V,y=0,

which ineans that 7 i1s a constant on M .
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On the other hand, we have from (3.2)
b 1 e
kcs fx — 7 V¢
Differentiating this covariantly and using (1.14) and (1.17), we get
Vb, +h g, u+h,, f)=r(f, +h, u)

because 7 is a constant, from which, taking the skew-symmetric part and
using (1.6),

x e
kce kdaxfa _7fdr:'

Tranvection v° yields 72% . f dx——-rux f dx with the aid of (2.24) and (3.2), which

gives 7(y —1)=0 because A(l-—Az) does not vanish almost everywhere. Hence
the lemma is proved.
Finally we prove

THEOREM 3.3. Let M be a complete and minimal generic submanifold of an

2m+1(1), (n>xm, nxm+1) whose normal connection

odd-dimensional unit sphere S
is flat. If the induced structure on M " is antinormal and the scalar curvature
of M "is a constant, then M " is a great spere S* or a product of two spheres

S™ 1/ 2)XS™(1/+/2) provided that the function ' zu, does not vanish almost

everywhere.

PROOF. If the case in which 5/—1220, then we see from (3.7) that k f;::O.

By completeness of M", M" is a great sphere S .

From Lemma 3.2 it remains the case in which 5A2:l. In this case, (3.1)

reduces to
e 2 z
(3.10) Begilty y=(B=10/ (L= A, (g, = F, fop+BCu, £, D,
which implies | |
x,¢ch
(3.11) h,h x=2(n—m).

On the other hand, {rom the Ricci identity

x X e, « e, %
Vdvchb: “vcvdhba o —chb kae _cha kbe

we have

(3. 12) (gdavdv A X )hcbx _ chhbeyhcby . K.dCbahdﬂykcby’

a ch

e
where chba —chb £ ¢a*

From (1.5) we f{ind
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day,co chx da - x, chy ch day
K ot 8 = = by b Ay Dy h )= Ch g b DBy B°7),
{rom which, usmg (2 24) (3.2), (3.8) and (3.10),
(3.13) K R =4(n—m)(n—m—1).

We have [rom (3.9) and (3.10)
K, =n—-2)g.,+7, °f,,— B, f, DIC fby)

Transvection 7, % B ; 21VeS
ey, €h ___ o _
(3.14) K_h. ~h y—2(n 2Y(i2—m)

with the aid of (2.24), (3.2), (3.10) and the fact that 6A2:1.
Substituting (3.12) into the identity

(3.15) A 5 ) =g (V Vb OB 4V i 1P
and takihg- account of (8.11), (8.13) and (3.14), we obtain
2(n—m)(2m —n)+|V h ,|I” =0,

where A=gfchVb. This implies that 2m=#x and thfb"":o because of nxm. The
first assertion means that M "is a hyper_surfaces of SEmH(l). Thus, according
to Therorem A, M is S"(1/+/ oY% S8"(1/4/2). Therefore the theorem is proved.

Kyungpook University
Taegu, Korea
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