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O. Introduction 

Recently, several authors have studied generic (anti-holomorphic) submanifold 

of a Kaehlcrian manifold ([5], [7], [9], [10], [11 ], ctc.) 

On the other hand , the author in the previous paper ([4]) studied a generic 

submanifold of an odd-dimensional unit sphere under the condition that structure 

tensor f induced on the submanifold is normaI. 

The purpose of the present paper is to study a minimal generic submanifold 

ofan odd-dimensional unit sphcre whose induced structure on the submanifold 

is antinormal (see 1). 

In 1, we recaIl fundamental properties and structure equations for a generic 

submanifold immersed in a Sasakian manifold and define the structure tensor f 
on the submanifold to be antinormaI. \ 

In 2, we investigate a generic submanifold with antinormal structure of an 

odd-dimensional sphcre whose normal connection is fIat. 

In the last 3, we characterize minimal generic submanifolds of an odd-dimen-

sional sphere un녕er certain conditions. 

1. PreIiminaries 

Let M2m+l be a (2m+ l) -dimensional Sasakian manifold covcrcd by a system 

。‘U~ ’

k ‘ h neighborhoods {U , x"} and (F;", G;" F'‘) the ‘ set of stru( 
l ’ Jl ’ ‘ 

sors of M~"‘ T ‘, whcre, here and in the seq i1e l, thc indices h, j , i , '" run 

over the range {1', 2', "', (2m+ 1) ’} .. Then we havc 

(1.1) F/F/=-치+FtFh， FlFit=0, FthF/ =0, 

‘ 
FtFt=1, FjtFiSGts = Gji - FjFi’ 

μ 

where Fi = GiftFt and 

(1. 2) FJFh=F1h h . ~ h 
FIF1 = -GIt-F +δj Ft ’ 

‘ 
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Vj denoting the operator of covariant differentiation with respect to Gjj• 

Let M n be an n-dimensional Riemannian manifold isometrically immersed ill' 

M2m+I by the immersion i : Aft-• M2m+1 and identify z-(M치 with Mn. In terms 
a, _,. .,n ., /" h, _ 1" 'II,2m+l of local coordinates (yU) of M" and (x") of M~"'TL the immersion z' is locally 

h h / a 
expressed by x"=x" (y"). where. here and in the sequel. the indices a. b. c. ". 

h ~ h run over the range {1 , 2, "', n}. If we put B;'=òb x", òb=ò/òyv. then B;' are 11: 

2m+l , •• .,n linearly independent vectors of M~"''' tangent to M". Denoting by gcb the fun-

damental metric tensor of M
n

• we then have 
h~ k 

gCb=Bc"Bb
ßG

, b ~hk 

because the immersion is isometric. 

We denote by Cf 2m+1- % nmmm1nm1u뼈1 
dices μ%’ Uι• tμw’ι. x.’ y and z run over the range {1*ξ’ .. … .. 커'. (2m+1-n)홉하}. Therefore. 
denoting by Vc the operator of van der Waerden-Bortolotti covariant differen-

tiation with respect to the Christofel symbols /b formed with gcb’ we have 

equations of Gauss and Weingarten for M n 

(1.3) 

(1.4) 

F Bh=h xCk, 
b "cb 

Pccf= -hc: B2 
respectively. where hc: are the second fundamental tensors with respect to the 

normals cf and hcax=hcbYgabgxy, gxy being the metric tensor of the normal 

bundle of Mn 
given by gxy=Gj감1강-， and (gc

”
=(gcb)-1. 

2m+l ~ __ /rr. 1 .. ".,. . , ",' n2m+l If the ambient manifold M~"'T. is a (2m + l)-dimensional unit sphere S~"'''( l). 
the equations of Gauss. Codazzi and Ricci for M n 

are respectively given by 

(1.5) KdcZ=갱gcb-δc?gdb+hda짜cbx-hr찌dbx’ 
(1 .6) 

(1 .7) 

V ~h_: - V_h~: =α d'II cb ,. c'" d h 

K x=h xh e -h xh e 
dcy "de "c y "ce "d y ’ 

where K dCb
a 

and K 4c/ are the Riemannian Christoffe1 curvature tensor of M" dcb _ ...... __.&.a. 4cy 

and that of the connection induced in the normal bundle respectively. 
n ., .,2m+l Now we consider the submanifold M" of M~"''' which satisfy 

lVp(Mn)JLJ?(lVp(Mn)) 
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n. at cach point Pr:M" , where N p(M") denotes the normal space at P. I Such a 

submanifold is called a generic submanzfold (an anU-holomorphz'c sμbma쩌ifold) , 
C (4) , (8) , (10)). 

From now on we consider in the sequel generic submanifolds immersed in a 
2m+l Sasakian manifold M~"'~~. Then we can put in each coordinate neighborhood 

h~t 
(1. S) Ft Bc =fc Ba --j; cx ’ 

(1. 9) 

(1. 10) 

FthCxt =fxaB2, 

Fh = z,aBah -F 1tXCxh, 

where fc
a is a tensor field of type (1, 1) defined on M

n
, fcx a local 1-form for 

each fixed index x, va a vector field , u'" a function for each fixed index x, and 

fr =fcYgacgyx· 

Applying F to (1.8) and (1 .9) rcspectively, and using (1.1) and these equa­

tions, we easily find tha t ([4)) 

frf￠ = -δt+fZfr+UcUa， 

￡efZ= -UcZtx ’ 

m • ’ 
l 

ι
 

/ 
l ‘ 
、

fxef:= δZ - %x μY， 

Since FtF
t 
= 1, 

(1 .12) 

Uer= -1txfr, 

vCj당=0， 

gdJcdfb
e 
= gcb - f낀f"'b - vcvb• 

we have from (1. 10) 

Zla1la+2CxZtx= 1. 

Putting fCb=f/gab' fc"， =f낀({yx’ then we easily see that f바=-fbc’ fc ",=f",c be­

cause of (1.11). 

Differentiating (1 .8), (1. 9) and (1. 10) covariantly and using (1. 1} ..... ,(1. 4), we 

have respectively (see [4]) 

(1.13) Vc자a= -와bνa+δcaUb+hcffr-h따자x. 

(1.14) 

(1.15) 

Fcfbx=g샘"'+h따자e’ 

Vcf"，a=δ짜x+hecxf Z, 
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(1.16) 

(1.17) 

(1. 18) 

By U-Hang K; 

kcexfg= hce갤x ’ 

FcZlb=fLb+hcbxXx , 

FcμX= -강-kcexνe 

with the aid of (1. 8)~(1. 10). where hCb%=hc/ gyx and foe =앙gm. 

2m+1 When M" is a hypersurface of M~"'T.， (1 .11) and (1.12) reduce to 

κ쌀=-δr+μ꺼a+νcUa’ 

4eμe= 一 Àvc’ vef/= -Àu인 

Ueμe = o, 2teZte = 1 - x2, 

gdefcdff = gcb 一UcUb- νcVb' 

νaν0=1_λ2， 

where we have put ff=κ， %=2eI‘ =À. These mean that the set Cfb
a
• gcb' Ub’ 

vb' λ) defines thc so-caIled Cf, g , μ， ν， À)-structure on M 2m ([2] , [6] ). 

The aggregate (4a, gcb, fcx, ν'c' U X
) satisfying (1 .11) and (1. 12) is said to be 

antz'normal if 

(1 .19) krex￡a+ 4ekeax=o. 

In characterizing the submanifold, we shaIl use the foIlowing Theorem A 

([1] , (2]). 

2;η 
THEOREM A. Let M~'" be a i:onzjJlete hyþersurlace with antz'normal Cf, g , U, 

2m+l 
ν， À)-slructure 01 an odd-diηzensional unit sþhere S~m" (1). 11 the lunction À 

does not vanish almost eveγywhere alld the scalar curvatμre 01 M
2m 

z's a constant, 
m . . _ ,.., 2m 

then M “ is a great sPher’ e SW"(l) or α þroduct 01 two sþheres S"'(1/，.，I효)xS"'(1 

1，.，1강). 

2. Generic submanifolds with antinormal structure 

Throughout this paper we assume that the induced structure satisfying (1.11) 

and (1. 12) is antinormal. W c. then have from (1. 19) 

(2.1) kccx4e = hhex휠. 

TrailS',-ccting (2. 1) wi th 디h a1][l tl냉 first relation of (1. 11), we find 

• 
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hcex( -￠ +fZfze 十UaUe) = hbex4cfab, 

from which , taking the skew-symmetric part, 

(2.2) (hce퍼e) fbz - (hbex4e) fLz + (hceκve)νb - (hbexνe)Uc = o. 

If we transvect (2.2) with vb and take account of (1.11) and (1 .12), then we 

obtain 

(2.3) -(h따앙ze)κZ+(l-A까cexUe- (hdZudue)νc==O， 

where A2==zt"z/, which transvect 강 and use (1. 11), 

A2hreXν띤
c 

= (hbeXubζeμZ)zt ... 

Thus, we have from (2.3) 

(2.4) A 
2(1_ A 2)hce"v

e 
==A

2 
(hde"l ve)vc + (h따앙z%)%fcY. 

Now we suppose in the sequel that the function A does not vanish almost 
2 2 

everywhere and n놓m， then so does A (1- A ~). In fact, if 1-A一 vanishes iden-

tically, then we see from (1. 12) that vc==O and hence fcb==O because of (1 .17). 

Thus we verify that 

O==fcbt
b 
==2(n -m) 

with the aid of (1. 11) and (1.12). 

where. 

Consequently (2.4) implies 

Therefore A(1- A2) is nonzero almost every-

(2.5) kt·exZle =B%c + AtZtzfcz 

where we have put 

AX = (hd2”dLeμZ)I A
2(1- A

2
) , 

Substituting (2.5) into (2.2), we find 

Bx = (kdZνd ve)/(1- A2). 

(hcexfze )fbz - (hbexfze )fcz + Ax(1tz ffνb - ttzf/vc) ==0, 

from which, 

(2.6) 

On th l} other hand. we have 

hcexLeZtZ 二 一 hrexZla￡ = -- haetZlafce = - (BXνe +A"κyfey)4e 

= 一 B"χJcZ+ A 2 
A"vc 
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with the help of (1. 11), (2. 1) and (2.5). Thus (~. 6) reduces to 

(2.7) hcexfye=:QJκz+Ax%yνc' 
where we have put 

(2.8) Qyzx =hdJ fze ff - BX%zZty
’ 

which implies 

QyZ=Q J -
Putting Qyzx=QyZw gwx' we see from (2.7) that 

(2.9) (Qyzx - Qxzy)fr+ (AxMy - AyXx)νc =0 

because of (1.16). 

Transvection V
C 

and fa
c 

give respectively 

(2.10) 

(2. 11) 

Aity 一 A/t%=O, 

(QyZ~ -Q~zy)μZ=O 

because 1-A
2 

does not vanish almost everywhere. 

Transvecting also (2.9) with fw
c and using (1.11) and (2.11) , we obtain QYZl 

=Q%zy' Hence QxyZ is symmertric for any index. 

Transvecting (2.7) with fa
c 

and taking account of (1. 11), we find 

hcZfye4c= -Qyr1tzUa +AX%y(ttzf낀， 

from which , using (1. 11), (2. 1) and (2.5) , 

(2.12) QYZxzez+B썩 =o. 

This implies 

(2.13) Bu-B χ =0 y -y 

because Q"yz is symmetric for alI indices. 

A being nonzero almost everywhere, (2.10) and (2.13) give respectivcly 

(2.14) 

where 

(2.15) 

A"=ßze", B"=αzf， 

β=A윌/A2， α =B깜ιA2• 

Thus (2.5), (2.7) and (2.12) reduce respectively to 

(2.16) hcexZle = %x(αvc +βuzf:) ， 

/ 
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(2.17) 

(2.18) 

k” xfe=Q xfcz+βztx% U ce - y-yz 

Q x z t yz μ =-αu U • y 

Transvecting (2. 1) with fCÓ yields 

0=hcex ( - gce+frzf;e+”rUe) 

= -hx+Qyzt(gzy-μZμY)+αu"(1 _A2) 

=-h"+Q"+αtex 

with the aid of (1.11) and (2· 16)~(2· 18), where f=gCbhcbX and Qt=gYZQyzx. 

Hence, it foIIows that 

(2.19) h"=O"+α1t • 

We now assume that the connection induceò in the normal bundle of Mn 
is 

fIat, that is, Kãc ,x=O. Then w낀 have from (1. 7) 

(2.20) h __ "h ,e. =h , _"h_e 
óy "óe"cy 

Transvecting (2.20) with fzh and using (2.17), we get 

h띠QtuyfiO+8zey7tz!，a) = h와(Qw: few 
+ ßu"uzv) , 

from which , using (2.16) and (2.17) , 

Qwy.cQvW"ε’+ ßu"UWvc) +αβχ1χyXz까=Q녀(Qv찮’+βχψuyvc) +αßU"UyUZVC’ 
or, using (2.18), 

(2. 21) Qz Qvt깐f=QulZXQJor. 

Transvecting (2.21) with fa
c 

and fu
c 

and taking account of (1.11), we have 

respectively 

QWYZQV
w
" (κν%) =QwzxQJ(%UUa), 

QWYZQvw，，(，δ;-xuμ”)=QJQJ(쉰-xuμv). 

The last two relationships give 

(2. 22) QwyzQuf =QwzxQJ 

because 1-A2 does not vanish almost everywhere, which impIies 

(2. 23) QyzxQyzx =QxQx. 

LEMMA 2.1. Let Mn be a generic submam'fold of S2m+l (1), (n놓m， n놓m+ 1) 
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whose n01’mal conneciz"on is Ilat. 11 the induced structμre on Mη is aniz"χoγmal 

and the lunc!z'on μXUX z's nonzero almost everywhere. Theη we have 

(2.24) 

(2.25) 

hcex1le =βμXχz fLz, 

QyzxxZ = o, hx = Qx. 

PROOF. From (2.16) we have 

hcexνeXx=αA2Uc+βA2(Xx fcx]·

Differentiating this covariantly and substituting (1. 14), (1.17) and (1.18), We 

obtain 

Cv dhcex)veux +h/xu/ I de +hd경tty) - hceXνeUdX +hdaxva)=ViαA2)Uc+Fd(RA싸xfcx 
2 ,..% .... ,.... e +αA2C강c +hdCxux)- βA~ Ic'Cfdx +hdexv<)+ßA<-u/gdcu~ +hde

o파 ), 
from which, taking the skew-symmetric part and using (2.16) and (2.20) , 

2... ....--7 / '" 2, . '1"""'7 " ..... '" 2, ". X 
(2.26) ViαA''')vc - V/αK)νd十Vd(ßA")uJ/; - V/ßA")uxl/ +2αA2감c 

+α(ßA2 +1)(μxldXVC-uxl/Vd) =0 

with the aid of (1. 6) and (2. 1). If we transvect (2.26) with V
C 

and take 

account of (1 .11) and (1 .12), we get 

(2.27) (1-A 2)ViαA2) =uepe(αA2)νd+ {veV/ßA2) 

-2，αA2_α〔RA2+1)(1-A2)}Mxfdx.

Transvecting aIso (2.26) with Izc and using (1. 11), we find 

(1- A
2
)V ißA

2
)uz = IzeV e(αA장vd+lzeVe(ßA2)κxl/+2αA2XzUd 

+α(βA“+1)(1 -A2)μi’d. 
Hence, the last two equations give 

2""' r7 ,,..,, ... 2, ... 2 erï /',.." ... 2 (2.28) A
<.o(l_ A

<.o)V d(ßA<.o) =A<-v.V/βK)νd+μZfzeFe(gA“)μxl/. 
Substituting (2.27) and (2.28) into (2.26), we get 

α{(1-A2)fdc-(μxfd%c-%fZUd)} =0 

because A(l- A2) does not vanish almost everywhere, from which, transvecting 

I
dC 

and making use of (1. 11) and (1. 12), 

a{%- (2m+1-%)+A2-1+A2} +2αuxu/gXY -i:uY) =0. 
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that is. α(tz- m -1) =0. Since n녹m+1. we have α=0. Therefore. (2.16), (2.18) 

and (2.19) reduce to (2.24) and (2.25). 

3. Minimal generic submanifolds witb antinormal structure 

In ‘ this section we consider a minimal generic submanifold Mn of an odd-
2m+1 dimensional unit sphere S~.，.-， L( 1). 

First of all we prove 

LEMMA 3. 1.. Let M n be a minimal generic submanifold of S2m+1(1) , (n놓m， 

M휴m + 1) whose 1l0rmal connection is flat. If the induced structμre on M n 
t'$ 

antinormal and the functz"oη A is 1Zonzero al most eveγyzνhere. Then we have 

(3.1) (1-A2)hfarh6e =2t Zt {g(1-A2)(gc-f;zfh) cex 0 y X Y ~1 ... , 
'Ct CO -' C -' zo 

+ß(ß-1)(UJbZ)(uw fcω)+β(ßA2-1)νcVb}. 

PROOF. Since Jv[
n 

is minimal, we see from the second equatíon of (2.25) 

that QX=O. Thus (2.17) becomes 

(3. 2) hcexfye =βUxztyVc 
with the aid of (2.23); Differentiating (3.2) covariantly and substituting (1.14). 

(1.17) and (1. 18), we find 

(V dhcex)f/+h//gdeUy +hdayfea)=(V dß)uxuyvC -ßuyvc(fdX +βμitzfd
Z) 

- βu，Fc(fdy+ßμitz f/) 十 ßuxulfdc +hdCZu
z
) 

because of (2.24) , from which , taking the skew-symmetric part with respect 

to d and c and using (1.6), 

(3.3) 2hc."; hday f/ = {(V dß)vc - (Vcß)νd}UxUy +ß{vd(uxfcy +uy f cx ) 

- Uc(ttifdy +%y fdx)} +2gfdc%%y - 2a2(ν'cUZ fd 
Z 

- V dUz f/)uxuy• 

If we transvect (3.3) with V
C 

and take account of (1.11), (2.24) and (3.2). 

we obtain 
?~ ~ 

____ 
~ , er-. _.. _-'.~ 

(3.4) (l-Aη(Vdß)μxUy=(v.Veß)vdUxμy+β(1 -Aι)(uxfdy +Uyfdx) 

+2ß(ß-1)(uz f/)uxuy• 、

Substitution the above equation into (3.3) yields 

(3.5) (1 -A장h따hday4a=%1%y{g(βA2 -1)(깐Xzfdz 一 νdμz f/) +ß(l- A 2)fdCUXUy}. 
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Transvecting (3.5) with f/ and making use of (1. 11) and (2.1), we get 

(1-A2)kcexhaey(-δZ十f↓zfza+UbUa)= 一ß(ßA2 -1) {A 2νcVb+(μJ/)(UWlb
W)} μ%Uy 

十ß(1-A2)( -gCb +1깐j나十Uc’에UXU，’ 
or, using (2.24) and (3.2), 

(1-A2) { -hcexhozy+g2μxκYCμZIC깐(uwlb
W) 十iA2μxUyνcν야 

= - ß(ßA
2 
-1) {A2ν'cVb +(μzl/)(uwfbw)}uxχy十ß(1-A2)( -gCb+f/ 1샤+VcVb)UsUy' 

Thereby, (3. 1) perived from this. This completes the proof of the lemma. 

From (3. 1) we have 

(3. 6) (l-A2)hcexhfx=βA2 
{(1- A

2
)(gcb - Ic

z fz~ 

十(ß-1)(μJCX)(uy 1，긴+(ßA2-1)까VJ. 

Since we have 

gCb(gCb-1cZ Ib)=2n 一 2m 一1 +A2, (Xx f낀(UyJCY) =A
2
(1- A

2
) , 

(3.6) implies 

(3. 7) hcbxkcbx =2gA2(% 一 ηt 一 1+ßA2). 

LEMMA 3.2. Under the same assμηZpti01ZS as those stated in Leηzma 3.1, tf 

the scalar czervature 01 M n 
is a constant, then we have 

(3.8) ßA
2
(ßA

2 
-1) =0. 

PROOF. We see from (1 .5) that 

(3.9) }(c b녁% -lJgcb+ hfxhbex 

because M n is minimal, where KCb is the Ricci tensor of M
n
• Thus, the scalar 

curvature }( of M n 
is given by 

K=%(% -1) - kcbxkcbx· 

From this fact and (3.7) we see that 

}(=n(n-1)-2r(n一 m-1+r)

where r=ßA
2
, Since K is a constant, by differentiating covariantly, we 

find 

(n 一 m+2r)'\lcr =0, 

、vhich meaüs that r is a constant on M
n

• 
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On the other hand, we have from (3.2) 

kcZfxe=rνc' 
Differentiating this covariantly and using (1.14) and (1.17), we get 

(Fdhcex)fze+hcex(gdeμx十 hda%lea)=r( I dc +hdC%u%) 

because r is a constant, from which, taking the skew-symmetric part and 

using (1.6), 

hcexkdax fae = r fdc· 

c .,.. 2 , x ~X 
Tranvection v. yields r κJd~=rzeJd~ with the aid of (2.24) and (3.2) , which 

2 
gives r(r-l)=O because A(1 -A~) does not vanish almost everywhere. Hence 

the lemma is proved. 

FinaIIy we prove 

n 
THEOREM 3.3. Let M" be a complete and minimal generic subηtanifold 01 an 

2m+l odd-dz-mensz-onal unü sþhere Swm'< (1), (n놓m， n놓m十1) μIhose normal connection 
a 

is Ilat. 11 the induced strμctμre on M" z's antiηormal and the scalar cμrvature 
n . ..,..,n 

01 M" is a constant, theη M" z's a great spere S" or a product 01 two sphe1’es 

Sm(l/ν강)XSm(1/.v'강) provided that the Iztnction z/ux does not vanish almost 

eνerywhere. 

PROOF. If the case in which βA2 =0, then we see from (3.7) that hcbx=o. 

By completeness of A4”, Af” is a great sphere Sn. 
2 

From Lemma 3.2 it remains the case in which ßAw =1. 1n this case, (3.1) 

reduces to 

(3.10) hcexhbe Y =(ß-1)/(1-A2)z낌Y {gcb - Ic
z j샤十β(μzl/)(uwlb'ω)}， 

which implies 

(3.11) hc;hc:=2[ %-m).

On the other hand, from the Ricci identity 

F V h x-F V h x= -K eh x-K eh x d Y c'" b:z ,. c Y d'" ba - .&.L d cb ,,, ae .I..&. d ca tfI be 

we have 

(3. 12) 
d a r7 ........., .. x" .. cb TT .. ev .. cb "r~ .. d av ., cb 

(g“ avdVakcbx)k x=Kcehblh y-Kdcbak Ih y, 

where Kdcba =Kdcfgea· 

From (1 .5) we find 
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KdcballdayhCby =: - hcbxh cbX 十 (hL써건) (hcbxhCbY) - (hcaxhPby) (hd따day). 

from which , using (2.24) , (3.2), (3.8) and (3.10) , 

(3.13) K hdayi낀 =4(n - ηz)(η 一 ηt- 1). 
dcbι v 

We havc [rom (3.9) and (3.10) 

KCb = (n - 2)gcb + 1/ I bz 一 ß(xtJ/)(μy l;);

Transvection 
by haVJhV-y g‘ lves 

(3. l4) Kceh0%암 = 2(n 一 2)(η -m) 

with the aid of (2.24) , (3.2), (3.10) and the fact that ßA
2

=1. 

Substituting (3.12) into the identity 

(3. 15) 웅A〔kcbxkCbx) =gda(VdVahc센cbx+ 1lVdhcbxjj2 

and takingaccount of (3.11), (3.13) and (3.14) , we obtain 

2(η -m)(2m-n)十 [ V dhCbx[[2 =0, 

where ð. =g~b\jcVb' This implies that 2m=n and Vdhc/=Obecauseof n놓m. Thè 
2m+l 

first assertion means that M n is a hypersurfaces of S"""'" (1). Thus, according 

to Therorem A, M n is Snl(1jν2 )XS'\1/.v강一). Therefore the theorem is proved. 
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