Kyungpook Math. J. Volume 20, Number 2 December, 1980

A NOTE ON PURE STATES OF BANACH ALGEBRAS

By Hansoo Kim and Yongchan Kim

1. Introduction

J. Anderson [1] investigated the extension question for arbitrary C^* -algebras A and B. In this paper, we give a characterization of a pure state and properties of states on C^* -algebras. Moreover, we generalize some results in [1]. For instance, in §3 we show that if $G^+(f)$ commutes with every element of C^* algebra and f is a pure state, then f is a homomorphism. In §4 we show that if f is a strictly pure state of a Banach*-algebra A and $L(f) \subset \alpha_f^{-1}$ (0), then f is a unique state extension of f_1 to A. Conversely, if f is the unique state extension of f_1 to A and dim $(A/L(f)) < \infty$, then f is a strictly pure state, where f_1 is the restriction of f to M(f).

2. Notations and preliminaries

By a Banach*-algebra, we mean a Banach algebra A with an involution *satisfying $||a^*|| = ||a||$ for all a in A. A positive linear functional f is called a state if ||f||=1. An extreme state is called a pure state ([7]). For each state f

on a Banach*-algebra A, let $L(f) = \{x \in A; f(x*x) = 0\}$ be the left ideal associated with f. Then f is a strictly pure state of A if f is a pure state and *-representation of A determined by f, π_f , is strictly irreducible on Hilbert space $H_f([2])$. f is a strictly pure state of A if and only if A/L(f) is complete in the norm $||a+L(f)||_2 = f(a^*a)^{\frac{1}{2}}$ if and only if $||a|_2$ and $||a|_a$ are equivalent, where $\| \|_{q}$ is the quotient norm on A/L(f) ([2]). If f is a pure state on a C^* -algebra, then f is a strictly pure state.

3. Pure states of C^* -algebras

PROPOSITION 3.1. Suppose A is a *-algebra with an identity e. Let f be a linear functional on A with f(e)=1. Then $N(f) \subset L(f)$ if and only if f is a homomorphism, where $N(f) = \{x \in A; f(x) = 0\}$.

PROOF. Assume that $N(f) \subset L(f)$. Since $N(f) = \{x - f(x)e; x \in A\}$, $f(x^*x) = \{x \in A\}$.

By Hansoo Kim and Yongohan Kim

 $f(x^*)f(x)$ for every $x \in A$. Then we are easy to see that $f(x^*y) = f(x^*)f(y)$ for all x, y in A. Thus f is a homomorphism.

Throughout this section, B shall always denote a C^* -algebra containing the identity e.

DEFINITION 3.2. For each state f on B, let $M(f) = \{t \in B: f(tx) = f(xt) = f(t)f(x) \text{ for all } x \in B\}$ and $G(f) = \{t \in B; |f(t)| = ||t|| = 1\}.$

For each $x \in B$, let $\alpha_f(x) = \inf \{ \|txt^*\| : t \in G(f) \}$.

208

R.V. Kadison proved in [3] that when f is a pure state of a C^* -algebra, then $N(f) = L(f) + L^*(f)$, where $L^*(f) = \{t \in B; t^* \in L(f)\}$. By proposition 3.1, a pure state on a C^* -algebra need not be a homomorphism. Hence we may consider the following proposition.

LEMMA 3.3. Let f be a pure state on B. Assume that $G^+(f) = \{a \in G(f); a \text{ is } a \text{ positive element}\}$ commutes with every element of B. Then $\alpha_f^{-1}(0) = L(f)$, where $\alpha_f^{-1}(0) = \{x \in B; \alpha_f(x) = 0\}.$

PROOF. In [1], $\alpha_f^{-1}(0) = L(f) + L^*(f)$ and $e \notin \alpha_f^{-1}(0)$. Thus $\alpha_f^{-1}(0)$ is closed proper subspace of B ([5]). Let $M = \{b + L(f); b \in \alpha_f^{-1}(0)\}$. Since $L(f) \subset \alpha_f^{-1}(0)$, M is $\| \|_q$ -closed. Then M is $\| \|_2$ -closed ([2]). By hypothesis, M is closed $\pi_f^{-1}(0)$.

invariant proper subspace of $H_f = A/L(f)$. By ([7], 1. 21. 10), $\{\pi_f, H_f\}$ is irreducible. Thus $\alpha_f^{-1}(0) = L(f)$.

PROPOSITION 3.4. Let f be a state on B. Suppose $G^+(f)$ commutes with every element of B. Then f is a pure state if and only if f is a homomorphism.

PROOF. f is a pure state if and only if $\alpha_f(x-f(x)e)=0$ for all x in A ([1]). Lemma 3.3 shows that if f is a pure state, then N(f)=L(f). Thus f is a homomorphism.

4. Extensions of states on Banach*-algebras

In this chapter, we carry some Anderson's results on C^* -algebra to Banach*algebra. Throughout this section, A shall always denote a Banach*-algebra with an identity e. The previous notations M(f), G(f) and $\alpha_f(x)$ in C^* -algebra have the same meanings on A.

A Note on Pure States of Banach Algebras

209

DEFINITION 4.1. Let f be a state on A. For each $x \in A$, let $G'(f) = \{a \in G(f); a = a^* \text{ and } f(a) \ge 0\}$, and $\beta_f(x) = \inf\{\|axa^*\|; a \in G'(f)\}$. In C^* -algebra, $G^+(f)$ implies G'(f). The following proposition and $\alpha_f(x) = \beta_f(x)$ are followed by [1]. We observe that $\alpha_f^{-1}(0)$ is closed on A and M(f) is Banach*-algebra. Also, $G(f) \subset M(f)$

and G(f) is a topological semigroup on A.

PROPOSITION 4.2.

Let f be a pure state on A. If $L(f) \subset \alpha_f^{-1}(0)$, then $\alpha_f^{-1}(0) = \overline{L(f) + L^*(f)}$.

REMARK 4.3. (1) The condition $N(f) \subset \alpha_f^{-1}(0)$ in the proposition 4.2 is essential.

(2) Strictly pure state of A and $L(f) \subset \alpha_f^{-1}(0)$ are independent.

EXAMPLE.

Let C be a complex linear space and let A be the algebra of all matrices of the form $\begin{pmatrix} \alpha, & \beta \\ 0, & \alpha \end{pmatrix}$ with $\alpha \in C$, $\beta \in C$. Then it is well-known that A is a commutative Banach*-algebra, but A is not reduced. Define a complex mapping $f; A \longrightarrow C$ given by $f(x) = \alpha$, whenever $x = \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$.

It is easy to see that f is a strictly pure state on A and $G(f) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}; a \in C \text{ and } |a| = 1 \right\}.$ Thus $L(f) \not\subset \alpha_f^{-1}(0).$

LEMMA 4.4. Let f be a pure state on A with dim $(A/L(f)) < \infty$. Then f is a strictly pure state on A.

PROOF. The identity map $a+L(f) \longrightarrow a+L(f)$ is a homeomorphism from $(A/L(f), || ||_2)$ onto $(A/L(f), || ||_q)$ ([4], p38). Thus A/L(f) is complete in the norm $|| ||_2$. Therefore f is a strictly pure state on A.

PROPOSITION 4.5. Let f be a state of A and let f_1 be the restriction of f to M(f). If f is a strictly pure state and $L(f) \subset \alpha_f^{-1}(0)$, then f is the unique state extension of f_1 to A. Conversely, if f is the unique state extension of f_1 to

210 By Hansoo Kim and Yongchan Kim

A and dim $(A/L(f)) < \infty$, then f is a strictly pure state of A.

PROOF. Suppose f is a strictly pure state on A and g is a state on A which agree with f on M(f). By [2], $N(f) = \alpha_f^{-1}(0)$. Thus there exist $a_n \in G'(f)$ such that $\lim_{n \to \infty} a_n x a_n = \lim_{n \to \infty} f(x) a_n^2$ for all x in A. Therefore we have f = g in A. Conversely, f is a pure state on A, because f_1 is a pure state on M(f). By

Lemma 4.4, f is a strictly pure state on A.

Kyungpook University

REFERENCES

- [1] J. Anderson, Extensions, restrictions, and representations of states on C*-algebras, Trans. A.M.S. 249(1979), 303-329.
- B.A. Barnes, Strictly irreducible *-representations of Banach*-algebra, Trans. A. M.S. 170(1972) 459-469.
- [3] R.V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci, U.S.A. 43(1957) 273-276.
- [4] W.Rudin, Functional analysis, McGraw-Hill, New York, 1973.

1

- [5] _____, Sums of ideals, Notices Amer. Math. Soc., 21(1974) A-189.
- [6] E. Hewit and K. Ross, Abstract harmonic analysis, Vol. 1, Springer-Verlag, Berlin,

1963.

-

.

· . ·

[7] S. Sakai, C*-algebras and W*algebras, Springer-Verlag, Berlin. Heidelberg, 1971.