
Kyungpook Math. ]. 
Volume 20. Number 2 
Oecembcr. 1980. 

THE COMPUTATION OF THE GENERALIZED INVERS .I!.; 

By Kern O. Kymn, * J. R. Norsworthy, and Tatsuo Okamoto 

The purpose of this paper is to report our computer experience of computing 

the generalized (g-) inverse on a UNIVAC 1108 utilizing two formulas for the 

g-inverse given by GraybiIl [1]. The two formulas for the g-inverse that we 

have selected are the ones given 1 in Theorems 6.5.1 [pp.108 10, 1] and 6.5.8 

[pp.117 8, 1]. In this paper we briefly describe the algorithms and program

ming of the two selected formulas and evaluate their relative performances in 

computing g-inverses. The evaluation was accomplished in terms of CPU time 

elapsed and accuracy evidenced in computing the g-inverse. 

We begin our discussion with the definition of a generalized inverse. 

DEFINITION. Let A be an mX1Z matrix. If a matrix Ag exists that satisficd 

the fo lIowing four conditions, A
g 

is a generalz'zed (g-) inverse of A. (i) AA
g 

is symmetric (ii) A
g 
A is symmetric (iii) AA

g 
A=A (iv) A

g 
AA

g 
=A

g
• 

We applied this definition to check the accuracy of the ca1culation each time 
after the g-inverse was computed. 

In the folIowing, we briefly describe the two selected algorithms to relate 

them to their programming
2

• 

THEOREM 1. If b z's a nonzero vector, then b
g
=(b'b)-l b'. 

PROOF. (1) bb
g 

=b(b’b)-l b’, symmetric 

(2) bgb=(b’b)-1 fb=I, symmetric 

(3) bbgb=b(b'b)-l b’b=b 

(4) bgbbg = (b’b)-lκb(b'b)-l b’ =(b’b)-lb’ =b
g 

The definition of a g-inverse is satisfied. b
g 

is the g-inverse of b. 

We uti1ized Theorem 1 whenever a g-inverse of a nonzero vector was needed. 

THEOREM 2. For any matrix A , we get 

(AA,)g = (A
g

) ’ A K• 
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PROCF. (A'i = (Agy. (AA'i =(A,)g A g = (Agy A g• 

We utilized Theorem 2 whenever A
g 

was known and the computation of 

(AA'i was required. 

ALGORlTHM 1. AIgorithm 1 describes the iterative scheme given by GraybilI 

[Theorem 6.5. 1, pp. 108-9, II to find the g-inverse of a matrix A. 

Let A be an mxt matrix; Iet Bt be an mXk matrix that consists of the fir 

k columns of A; Iet A k _ 1 be a matrix that consists of the first (k一 1) colum 
th 

of B k' and Iet ak be the k". column of Bk. Partition BZ by 

Bz=(A l' aZ)=(al' aZ) 

The g-inverse of BZ is given by 

where 

B3= 
Af-Af an b! 1 H1 "'z vZ 

b! 2 

(I一AlAf] a2 if a2낯A1A휠2 
b2= 

’ 

[1+az'(A1A 1
,)g azl (A 1A 1'faz 

az' (A 1A 1'l (A 1 A 1'l aZ 

if a" =A , A ,
g 

z -.<:11 =1 "z 

Next we partition B3 by 

B3=(Az.' a3) = (BZ' a3) 

The g-inverse of B3 is given by 

where 

B!= 3 

B!-B! an b! Z .<.I Z "'3 v3 

b! j 

(I -BZB한a3 if ， a3 =PBzB황3 

‘ 

b3= ~ [1+a3'(BZBz'i a3] (BZBZ’ )ga3 

a3’ (BzBz'l (BzBZ'/a3 

We continue until we partition Bt=A by 

.f a =B Bg 
3 - .<.I Z.<.l Z "'3. 

ν 

Bt=(At_ 1• at)=(Bt ,--l' 아) 
‘ 

The g-inverse of Bt is given by 

’ 
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B/!_l-Bε1 at bf 
bf 

B￥=Ii 

where 

[1一Bt - 1Bf_l) 와 if at :;f:.Bt _ 1Bt감 까 

a =B B g a. t t-l1 t一 1 Wt 

3; …, 1 t 」 1.

[1+ajBL1 B/-1)gat] (Bf-1Bf-1)g at 
. . ‘ 

/’ ‘* 
. • 

/ 
‘ 

; 
‘ =- ìf 

a/ß'_1Bt 一 1)"CBt _ 1Bt 一 1)" a, 

1=2, 

t. 1 to compute b흙 j=2, 3, 

We utilized Theorem 2 to compute CB껴f in lJj+ l’ 

Ag=B; • 

• • • , 

we have the desired result 

We utilized Theorem 

bt= 

Since Bt=A. 

Flow Chart 1 translates AIgorithm 1. 

FLOW CHART 1 

CC) NC, NR, B, SUBROUTINE GINV CA, 

WHERE: 

A is a matrix to be: inverted. 

B is the G-inverse öf A. 

N R is the row dim•nsion of A. 

NC is thc column dimcnsion of A. 

s;)ccifies lhe submatrix 0 1' the first z' columns of A. A
‘ 11 1" X ,) 

BUXllr) sp2cifies the submatrix of the first z' r6WS of B. 

‘ th 
Ai and Bi specify thc i"" column and row of A and B rcspectivcly. 

CC l11 ust bc dimcnsional at least (1lYXnr)+(3Xnc). 

t 

’ r 

'-
ι 

、 、

’ ‘ 

‘ -
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Dimcnslqn i\ rra\'s änd 

끄l.i..!J.괴fu‘← 
• 

c‘umpu Lc B ‘ 
B,- (A ,' A ,)-l A( 

Set t 2 
i~i+l k • 1 
II=i'-1 

? 

Computc Cç.:rX"‘,) 

C(Mr"산，)견=AClJ r.X .t) X B(k'/~，.) 

• 

YES A;=CC .. r:ι，，)강 A;? 
NO 

J 
Com'putc C(~，ψ"， Compulc a vcclor (lJ) 

CCllr:Mf} =B’(‘-.::".) X B야Xμ，) b=(I -C‘ .O:.r)) Aó 

Compulc a 、 ,cctor (b) ι“ J Ill IH!LC b ‘ 
1"" > b (!J 'b)" Ib’ b=( I+A',CA.) CA. 

(AηCCA，) 

CompUle Bux…) 

B(;'1<Il,'= rB(!:~"，)-B(.t κN'} Aib
。、 I샤= L b一

NO 

YES 

B<,r ‘”’) is thc 

g- in\"crsc of Acmr;'.t' 

END 

ALGORITHM 2. AIgorithm 2 describes another computing formula given by 

GraybilI [Theorem 6. 5. 8, pp. 1l7 8, 11 to find the g-inverse of a matrix A. 

Let A be an mX η matrix of rank r. The g-inverse of A is found by the 

foIIowing steps: 

B 

B-
--‘ 

n/i 

J 

J 

B 

B 
1 

2 

c 
c 

ri 

ri 

*’” 

Ll‘ 

U 

잉
 

ν
 U 

A
내
‘
 

/
l‘
、

/
，
‘
、

4 

콰
 타
‘
 난 

: 

1i 

n
ι
 

?u 

B 
C 

C 

C 

••••••••••••••••••••••••••••••••••••••• 
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Cr=I (lIr- 1) tr Cr_1B-Cr_1B 

Terminate the interation if Cr+1B=O. 

We have 

A
g 

=rCrA'/tr (CrB). tr (CrB)=/=O. 

Flow Chart n translates AIgorithm 2. 

Dimcnsion arrays 
and initiali 7.e 

Computc B 
B=A'A 

Computc C1• 

C,=I 

m 
뼈
 

p 
ι
 

N 
이
 

m 
씨
 

m ” 
、]

e 
• 

덕
 대
 

’ ·” 야
 

Q 
]

i=i+1 
. . .~ 
t =11: 

YES 

Computc CiB 

and TR (C,B) 

Computc Ci+1 

C;,,=I (l1i) TR (C,B)-C‘B 

Computc C이，B 

and T~(C; ,,8) 

NO Y’”S 

Cumputc D 
D-c I(G.A')/TR(CR) and D is 
thc (;.i ll\"crs。 이r A. (R=l) 

END 
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FLOW CHART n 
SUBROUTINE CINVX (A , D, NR, NC, CC) 

WHERE: 

A is a matrix to be inverted. 

D is the G-inverse of Æ 

N R is the row dimension of A. 

NC is the column dimension of A. 

R specifies the rank of A. 

TR(X) specifies the trace of amatrix X. 

CC must be dimensioned at Ieast 3X(NCXNC). 

2 
Table 1 summarizes our computer experience- of computing g-inverses utilizing 

AIgorithms 1 [Theorem 6. 5. 1, pp.108, 10, 1] and 2 [Theorem 6. 5. 8, pp.117 

-8, 1]. 

It was found that AIgorithm 1 gave accurate g-inverses in aII the cases. 3 

AIgorithm 2 produced errors in most of the cases excepting sm.aII-size matrices 

that are perhaps calculable utilizing a desk calculator. 

In Flow Chart n, two separate computing steps have been each matked by 

an asterisk. It was found that the summing operation in each starred step was 

the major contributor to errors. When the size of matrices grew, the summing 

operation in forming each element of B=A’ A and the summing of the diagonal 

elements of CiB in computing the trace of C;B each became the main source of 

errors. 

AIso it was found that AIgorithm 1 required far shorter CPU time than 

AIgorithm 2 excepting smaII-size matrices. Among varying sizes of matrices, 

however, computing g-inverses by AIgorithm 1 required sharply increascd CPU 

time as the size of a matrix grew. In Flow Chart 1, two separate computing 

steps have been each marked by an asterisk whilc a third one has been marked 

by double asterisks. As k became large, it appcarec1 that progressively longer 

CPU time was required in the computing steps that are marked by a single 

asterisk. As the row dimension of the matrix became larger, increasingly longer 

CPU time was requirec1 in the computing step that is marked by double 

asterisks. 
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Table 1. Performances of two G-Inverse Computing Formulas 

CPU Time (Seconds_ Milliseconds) and Accuracyb 
Order of Matrix' 

Algorithm 1 Algorithm 2 

1. Singular 
5X5 4.264 (육) 3.563 (률) 

1O X10 4.386 (‘) 4.161 (**) 

20X20 6.981 (용) 10.918 (‘η 

50X50 1 : 02.220' (용) (N) 
2. mXη (m"'"η) 

5X15 4.104 (률) 4.819 (‘) 
1OX20 5.127 (‘) 6.313 (융융) 

20X30 10.306 (*) 20.437 (률융) 

50X100 5 : 11.250' (흩) (N) 

a. Random numbers generated by RANDU, a UNIV AC systems software. Each element 

consists of 6 digits decimal fractions. 

b. Includes check and random number generating time. The symbols represent no error 

(용)， error (**), no trial (N). No trial is recorded if an immediately preceding matrix 

produced too large an error warranting no trial on a larger matrix. 

c. 1 minute 2 seconds 220 milliseconds, and 5 minutes 11 seconds 250 milliseconds. 

It was concIuded that Algorithm 2 should not be applied to compute g-inver

ses of martrices excepting smaIl-size matrices that are perhaps calculable by a 

desk calculator. Evaluated in terms of CPU time and accuracy, Algorithm 1 

was concIuded to be a recommendable formula to compute g-inverses of the 

size of matrices that would reruire a computer processing. 

Footnotes 

* Kern O. Kymn’ s research for this project was supported by Contract DACA 

31-73-C-0058, U. S. Army Corps of Engineers. The concIusions and opinions 

expressed in this paper do not necessarily reflect those of the General Serv 

ices Administration, the U. S. Army Corps of Engineers or the Bureau of 

Labor Statistics. 

1. Graybill recommends the formula given in Theorem 6. 5. 1 as perhaps the 

most useful for digital computers if a matrix is large. 

2. Each element of the matrices in this paper was generated by utilizing RAN

DU, a UNIV AC 1108 random number generating systems software. Singular 

matrices were formed by equating the components in the first column to 
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those in the second column. 

3. We applied the definition of the g-inverse to check the accuracy of compη 

tation. The numbers were printed out to the fifth decimal place utiIizi n 

fIoating point format. 
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