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FURTHER RESULTS ON GENERALIZED CLOSED SETS IN TOPOLOGY

By William Dunham and Norman lLevine

1. Introduction

Generalized closed (g-closed) sets in a topological space were introduced by
Levine [5] in order to extend many of the important properties of closed sets to

a larger family. For instance, it was shown that compactness, normality, and
completeness in a uniform space are inherited by g-closed subsets. In the present
paper, we continue the study of g-closed sets, obtaining characterizations in
(2) and providing, in (3), examples of common topological structures which,
although not necessarily closed, must be g-closed (e. g., derived sets, complete
subspaces of uniform spaces, compact subsets and retracts of regular spaces).
We prove a “generalized” Tietze Extension Theorem in (4) and apply this
result, in theorem 5.3, to the problem of extending continuous, real-valued
functions defined on compact subsets of completely regular spaces. Throughout
the paper, many familiar results, and perhaps some unfamiliar ones, are derived
as corollaries.

2. Charaeterizations of G-closed sets

DEFINITION 2.1. (Levine [5]) A subset A of a topological space is g-closed
if c(4)CO when ACO and O is open. (Here “c” denotes the closure operator.)

THEOREM 2.2. The following conditions are equivalent:
(a) A is g-closed |

(b) for each xEc(A), c(x)(AFQ

(¢c) ¢c(A)~A contains no non-empty closed subsets

PROOF. (a) implies (b): Suppose x&c(A4)  but c(x)(MA=¢. Then ACEc(x)
(where © denotes the complement operator), and so c(A)C&c(x), contradicting
x&Ec(A4). - - .

(b) implies (c): Let FCc(A)~A with F closed If there is an xEF then, by
(b), ¢F#c(x)NACFNAC(c(A)~A)NA, a contradiction. We conclude that F'=¢.
- (o implies (a): If ACO and O 1s open, then C(A)ﬂ E0 is a closed subset of
c(/-l)\A and thus is empty. Hence C(A)CO and A4 is g-closed.
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COROLLARY 2.3. A is g-closed iff A=F~N, where F is closed and N

contains no nown-emply closed subsets.

PROOF. Necessity follows from theorem 2.2(c) with F=c(A4A) and N=
c(A)~A. Conversely, If A=F~N and ACQO with O open, then F[1E0 is a
closed subset of N and thus is empty. Hence c(A)CFCO.

COROLLARY 2.4. In a T,-space, g-closed sets are closed.

PROOF. If A is g-closed in a T;-space, theorem 2.2(c) implies c(4)~A=¢.
Hence c(A4) = A.

REMARK 2.5. A discussion of spaces in which the closed sets and the g-
closed sets are identical—the so called T , ~spaces—can be found in Levine [5]

2
and Dunham [1].

3. G-closed sets arising naturally in topolegy

LEMMA 3.1. Let A be a subset of a topological space with A’ its derived set,
and suppose A’CO for O open. Then A”CO.

PROOF. Suppose x&A” but ¥*&0O. Then x&£4” and so, {for some open set U,
x&U and ANUC{x}. But x&A” implies ycA' NUNE{x} for some y. Now,
y&0NU and yEA’ and so o2 ANONUNE{y}CANUC{x}. It follows that x&0,
a contradiction,

THEOREM 3.2. In any topological space, derived sets are g-closed.

PROOF. If A is any subset of a topological space with A'CO for O open,
the previous lemma implies ¢(A")=A4"UA”CO.

COROLLARY 3.3. Derived sets in a compact space are compact.

PROOF. By the previous result, derived sets are g-closed, and, in[5], theorem
3.1, Levine has shown that g-closed subsets of a compact space are compact.

REMARK 3.4. A space X is said to be weakly Hausdorff if c(x)=c(y) whe-
never there is a net S: D— X with lim S=x and lim S=y. Of primary impor-
tance is the fact that any regular space or any Hausdorff space is weakly
Hausdorff (see Dunham [2] for details). We shall use this idea in the next four

examples of g-closed sets.

THEOREM 3.5. If A ¢s a compact subset of a weakly Hausdorff space, then
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A is g-closed.

PROOF. For x&c(A4), there is a net S : D—>A with lim S=x and, by compac-
tness, there is a subnet T : E——A with lim T=a for some e&=A. The weakly

Hausdorff property implies c(@)=c(x) and thus e&Sc(x)NA. By theorem 2.2(b),
A is g-closed.

COROLLARY 3.6. A compact subset of @ regular space is g-closed and a
compact subset of a Hausdorff space is closed.

PROOF. Use corollary 2.4, remark 3.4, and the previous result.

THEOREM 3.7. If A is a retract of a weakly Hausdorff space X, then A is
g-closed.

PROOF. Let 7: X——A be the retraction and let x&c(A4). Then there 1s a
net S: D—A with lim S=x, and it follows that lim S=lim 7°S=7(x). We
conclude that c(7(x))=c(x) and thus c(x)AFp.

COROLLARY 3.8. A retract of a regular space is g-closed and a retract of a
Hausdorff space is closed.

THEOREM 3.9. Let f: X—Y be continuous, with Y a weakly Hausdorff space,
and let Gf={(x,f(x)) : x& X} be the graph of f. Then Gf ts g-closed in X XY.

PROOF. For (x,3)&c(Gp), thereis a net S : D—Gy, denoted S{d)=(x,, f(x,)),
with lim S=(x,y). Then, by continuity, f(x)=limf(x,) =y, and so c(f(x))=c(y).
Hence (x, f (x))EGfﬂ (c(x) Xc(y)) =Gfﬂc({(:r, y)}), and Gf is g-closed by theorem
2.2(h).

COROLLARY 3.10. The graph of a continuous function whose range lies in a

regular space is g-closed. In particular, the diagonal of a regular space is g-

closed.

THEOREM 3.11. Suppose (X, Z) is a uniform space with ACX a complete
subspace. Then A is g-closed in the uniform topology.

PROOF. For x&c(A) there is a net S: D—A with lim S==x. Then S is A-
Cauchy, and so lim S=« for some a&A. Since X is completely regular, it is
weakly Hausdorf{ by remark 3.4. Hence e&=c(x)1A and A4 is g-closed.

REMARK 3.12. By the previous result and Levine [5], theorem 3.4, we see
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that complete subspaces of uniform (or pseudometric) spaces are g-closed, while
g-closed subspaces of complete uniform (or complete pseudometric) spaces are
complete. As an immediate consequence we have the familiar:

COROLLARY 3.13. Complete subspaces of separated uniform spaces or of metric
spaces are closed.

THEOREM 3.14. Let (Y, d) be a pseudometric space and let B(X,Y) be the
family of bounded maps from X to Y with o(f, g)=sup{d(f(x), g(x)):xEX} the
pseudometric of uniform convergence on B(X, Y). Further, let .Y —B(X,

Y) be the natural embedding given by B(y)(x)=y for all x&X. Then BlY] is
g-closed in B(X, Y) with the pseudometric topology.

PROOF. If f&c(B(Y]), then, for each natural number 7, there is a y €
with o(f, 8(y,)) <l/n. Fixing x,&X, we assert that S(f(zx)e&c(f)NL[Y] and
it suffices to show o(f, B8(f(xy)))=0. But, for any x&X and for # arbitrary, we
have d(f(x), B(f(x))(x))=d(f(x), f(x)) <d(f(x), ¥ )+d(y,, f(zp) <o (f, B(y,))
+0(B(y,), f)<e/n. Thus, o(8(f(xy), f)=0 and B{Y] is g-closed by theorem
2.2 (b).

COROLLARY 3.15. (¥, d) is complete iff (B(X,Y),0) is complete.

PROOF. Necessity is a standard result, and sufficiency follows by combining
theorem 3.14 and remark 3.12 and noting that 5 is an isometry.

4. A generalized Tietze extension theorem

REMARK 4.1. In this section we shall prove that “closed” can be replaced by
“g-closed” in the statement of the Tietze Extension Theorem. We begin by
recalling a theorem of A.D. Taimanov:

THEOREM 4.2. If ACX and f: A—>Y is conlinuous, where Y is a compact,
Hausdorff space, then the following are equivalent:
(a) f has a continuous extension to c(A)

(b) for every G, and G, closed and disjoint in Y, the closures of f _.I[Gl]
and f_1[62] are disjoint in X.

PROOF. See Taimanov [7] (in Russian) or Engelking [3], theorem 3.2.1.

THEOREM 4.3, If ACX is g-closed and f : A—Y is continuous, where Y is
compact and Hausdorff, then there exists a continuous F . c(A)—Y with F| ,=/.
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PROOF. Let G, and G, be closed, disjoint subsets of ¥. Defining D=c(A)N
c(f ﬁl[GI])ﬂC(f #'I[GQ]), we assert that DCEZA. For, if x&DNA, then for i=

1,2, we have xEAﬂc(f_l [G.])=c, (f_l [Gz_]):f"'l [GI.] by continuity, and thus
f(x)EG NG, a contradiction. Hence D is an X-closed subset of c(4)~4 and so

D=¢ by theorem 2.2(c). The continuous extension of f to c(4) follows from
theorem 4. 2,

COROLLARY 4.4. The previous result holds if “compact” is replaced by
“locally compact”.

PROOF. If Y is locally compact and Hausdor[f, we let Y*=Y U{co} be the one-
point compactification of Y. Then Y* is a compact, Hausdor[f space and so there

is a continuous F :c(4A)—>Y* with F\Azf. But F“1 [{co}] is a closed subset of

c(A)~A and thus is cmpty. Hence F . c(A)-—Y is the desired extension.

THEOREM 4.5. (Gesneralized Tielze Extension Theorem) A conlinuous, real-
valued funciion defined on a g-closed subset of a normal space has a continuous

extestston Lo the enlive space.

PROOF. 1If A is a g-closed subset of the normal space X and f: A—R is
continuous, then there is a continuous F :c(4)—R with F|,=f by corollary
4,4, The Tietze Extension Theorem then provides a continuous F*¥: X—FR
with P‘*IC(A);F. Thus F*| ,=F1.

COROLLARY 4.6. A continuous, real-valued function defined on a complete

subspace of a pseudometic space has a continuous extension 1o the enilire space.

PROOF. A pseudometric space is normal and a complete subspace is g-closed

by remark 3.12.

REMARK 4.7. “Pseudometric” can not be replaced by “uniform” 1n the previous
result. Let A be an uncountable set and, for each a&A, let (X_, Z,) be the

reals with the usual uniformity. Then (X, #)=X{(X » 7 ) a0} is a complete
uniform space. By Stone [6], X with the uniform topology is not normal, and

so there is a closed (and thus complete) subspace A of X and a continuous f :
A— R which can not be extended continuously to all of X.

9. An application
REMARK 5.1. We conclude this paper by applying the concepts developed
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above to the problem of extending continuous, real-valued functions from compact
subsets of a topological space to the space itself. We shall use the following
characterization of complete regularity, which is the non-T, analogue of the

well-known result that a space is Tychonoff (i. e., completely regular and T,)

iff it is homeomorphic to a subspace of a compact, Hausdorff space:

THEOREM 5.2. A space is completely regular iff it is homeomorphic to a
subspace of a compact, regular space.

PROOF. See Dunham [2], corollary 7.8.

THEOREM 5.3. A continuous, real-valued function defined on a compact subset
of a completely regular space has a continuous extension to the entire space.

PROOF Let A be a compact subset of the completely regular space X and let
f: A—R be continuous. By theorem 5.2, there is a compact, regular space

X*¥and an #: X—X* so that #: X—h(X] i1s a homeomorphism. We note

that:
(i) X* is compact and regular and thus is normal and regular.

(i) hR[A] is compact in X* and thus is g-closed in X* by corollary 3.6.
(iii) k| , : A—h[A] is a homeomorphism and so f':::'(klﬂ)“l : h{A]—>R is

continuous.
By (1)—(@ii) and theorem 4.5, there is a continuous F*: X*—R with

F*‘;;[A] ==fc~(h\A)‘1. Define F:X—R by F=F*ps Then F is continuous,
real-valued, and, for x&A4, F(x)=F*(h(x))=f(x). Thus F 1is the desired

extension of f.

COROLLARY 5.4. A continuous, real-valued function defined on a compact
subset of a uniform (or regular, normal; or regular paracompact; or regular,

second axtom) space has a continuous extension lo the enlire space.

PROOF. All such spaces are completely regular.
REMARK 5.5. In theorem 5.3, “completely regular” can not be weakened to

“regular”. Hewitt [4] provides an example of a regular, T, space on which the

only continuous, real-valued functions are constant. Thus, any non-constant,

teal-valued function defined on a two-point subspace is continuous but has no
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continuous extension to the entire space.
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