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0-DIMENSIONAL COMPACT ORDERED SPACES

By S.S. Hong

0. Introduction

It is well known [G. J.] that for a completely regular space X, the Stone-
Cech compactification 8X of X is characterized by the homomorphisms on the
ring C*(X) onto the ring R of real numbers, and the realcompactification v.X
of X by the homomorphisms on the ring C(X) onto the ring R. Hence a comp-
act (realcompact, resp.) space X can be completely determined by C*(X)
(C(X), resp.).

In this paper, we are concerned with the analogous problem in ordered topo-
logical spaces and continuous isotones, in particular O-dimensional ordered spaces
and their 0-dimensional ordered compactifications.

Choe and Park have [C. P.] introduced the concept of bifilters to get ordered
compactifications for ordered topological spaces. Here using bifilters with bases
consisting of clopen decreasing sets and clopen increasing sets, respectively,
we distinguish compact objects among O-dimensional ordered spaces, and then
by the analogous way with maximal clopen bifilters as in [C. P.], we construct
the 0-dimensional ordered compactification of a O-dimensional ordered space X,
which gives rise to the reflection {;: X—(,X. And for any ordered topological
space X, we consider the lattice C(X) of continuous isotones on X to the two
point discrete chain 2. Establishing the one-one correspondence between maximal

clopen bifilters on a 0O-dimensional ordered space X and lattice homomorphisms
on C(X) onto 2, it is shown that {,X is precisely the topological ordered

space of lattice homomorphisms on C(X) onto 2. In consequence, we have
corresponding results for {;X to those for X and v.X.

1. 0-dimensional ordered spaces

DEFINITION 1.1. An ordered topological space is a triple (X, 77, <) such
that (X, .Z7) is a topological space and < is a partial order on X.

The class of ordered topological spaces and continuous isotones between them
obviously forms a category, which will be denoted by OTOP. Then it is clear
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that the underlying set functor U: OTOP——SET is (onto, mono-sources)-topo-
logical [H], while SET is the category of sets and maps. Let 2 denote the

two point discrete chain {0, 1}, and let ZO denote the epireflective hull of
{2} in OTOP.

DEFINITION 1.2. An ordered topological space is called O-dimensional if it is
an object of ZQ0.

Since the category OTOP is an (onto, U-initial mono-_sources) category, the
following is immediate by Proposition 7.4 in [H].

PROPOSITION 1.3. An ordered topological space X is O-dimensional i1f and
only if the set C(X) of all continuous isotones on X to 2 forms a U-initial mono

SOUrcCe.

COROLLARY 1.4. Let X be an ordered topoiogical space. Then X ts O-dimen-
stonal if and only if it salisfies the following conditions:

1) if xxy, there is u&C(X) such that u(x)=1 and uw(y)=0,

2) the family of clopen decreasing sets and clopern increasing sets forms a
subbase for the topology on X.

PROOF. Noting that for any #&C(X), 2.4"1(0) (u—l(l), resp. ) 1s clopen de-
creasing (clopen increasing, resp.), and for any clopen increasing (clopen de-
creasing resp. ) set A, the characteristic map of 4 (X — A4, resp.) 1s a continuous
1sotone on X to 2, the corollary follows immediately from Proposition 1. 3.

REMARK 1.5. 1) The order on a O-dimensional ordered space is closed [N],
and its topology has a base consisting of convex sets.

2) Using the three point discrete chain, Choe and Y. H. Hong have intro
duced [C. H.] the concept of O-dimensional ordered spaces, which is duly
equivalent with that in this paper.

3) An ordered topological space X is O-dimensional if and only if it is 2-
regular ordered space [C. H.], [P3]. Hence for any X&OTOP, let h: X—>
ZC(X) be the map defined by k(x):(zc(x))ﬂeccx), and let 2X be the subspace
of 2C(X) with 2(X) as its underlying set. Then the map z: X—z2X (z2(x)=h
(x)) 1s the ZO-reflection of X.

The {ollowing definition is due to Y. S. Park [P2].

DEFINITION 1.6. A pair (¥, &) of filters on a partially ordered set X is



O-Dimensional Compact QOrdered Spaces 161

said to be a bifilter on X if # (&, resp.) has a base consisting of decreasing
(increasing, resp.) sets and F(G#¢ for any FEF and Ge&¥. If F (C,
resp. ) is a base for # (&, resp.), then (%,&) is called a base for the bifilter

(F, @).

REMARK. Let X be a partially ordered set.

1 If (&, &) i1s a bifilter on X, then the join filter of % and &, denoted
by V&, exists.

2) For bifilters (&%, £),(o”, # ) on X, we define a relation (&%, £)C
(#, Z) if and only if F C&# and €C% . In case, (&, %) is said to be
contained in (ZZ, F# ). Then every bifilter is contained in a maximal bifilter,
l.e. maximal element with respect to the relation C.

DEFINITION 1.7. Let X be an ordered topological space. Then a bifilter
(&, &) on X is called clopern 1f & (&, resp.) has a base consisting of clopen
decreasing (clopen increasing, resp.) sets. By a maximel clopen bifilter on X

we mean a clopen bifilter not contained in any other clopen bifilfter.

PROPOSITION 1.8. Let X be an ordered topological space. A clopen bifilter
(&, &) on X is a maximal clopen bifilter if and only if for any continuous

isotone u s X—2, t.e. u&C(X), u( 5 M ) is convergent.

PROOF. Let (%, &) be a maximal clopen bifilter and #&C(X). Suppose
zzﬁl(O)QF and n_l(l)$§. Then by the maximality, there are F,F&F
and G, ¢G'E€¥ such that zc—l(O)HFﬂquS and # —ICI)DF’HG’:-(;S. Since X =
zcd](O)Uu—l(l), (FNGONWEF' NG )=(FNF'))NGNG )=¢, which is a contradic-
tion. It is now clear that if u_l(O)Eﬁ", then u(ﬁ"\/f)———-ro, and if #—1(1)
€%, then zz(ﬁ'vg?)-———arl. For the converse, let (&, %) be a clopen bifilter
with (&, €)C(F, F ). Take any clopen increasing set K&E% . Then the
characteristic map # of K is a continuous isotone. If #( % vf)——avo, then
there i1s F&F and G&¥ with #(F1&)=0. Since F is decreasing, #(F)=0,
so FNK=¢, and we have a contradiction. Thus zz(ﬁ”vf)———rl, l.e. there is
Fe¥ and GE¥ such that «(FNG)=1. Since G is increasing, #(G)=1, i.e.
GC A and hence K&€¥. Thus &=2%". Dually, one can conclude ¥ =Z.
Therefore (%, &) is a maximal clopen bifilter.

REMARK 1.9. By the proof of the above proposition, for any maximal clopen
bifilter (#, &) and any #=C(X), zz_l(O)Eﬁ- if and ony if u-(ﬁ_vf?)—-—?'o,
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and u_l(l)Ef if and only if zz(ﬁ'vf)—ﬂ.

DEFINITION 1.10. Let (&, &) be a bifilter on an ordered topological space

X, then (F,%) is said to converge fo x if 5 Vg’ converges to ¥ in X, and
a point y 1s said to be an adherence point of (¥, &) if y is an adherence point

of F~&.

REMARK 1.11. For any ordered topological space X and x&€X, Y (x) (F(x),
resp. ) denotes the family of clopen decreasing (clopen increasing, resp.)
neighborhoods of x. It is clear that (Z(x), F(x)) is a base for a clopen bifilter.
Moreover, if X is O-dimensional, then by Corollary 1.4, & (x)vf (x) is a local
base at ¥ and hence by proposition 1.8 (Z(x), F(x)) is a base for a maximal
clopen bifilter. In the following, the bifilter gencrated by (Z(x), F(x)) will
be again denoted by (Z(x), F(x)).

THEOREM 1.12. Let X be a O-dimensional orvdered space. Then the following
are equivalent:

1) X s compact.

2) Euvery clopen bifilter has an adherence point.

3) Every maximal clopen bifilter is convergent.

PROOF. 1)=—2) Clear.

2)—>3) Let x be an adherence point of any maximal clopen bifilter (&, &).
Then by the maximality of (&%, &), (Z(x), F(x)) is contained in (&, &),
so that by remark 1.11, (¥, &) converges to x.

3)—=1) By the Alexander subbase theorem, it is enough to show that every
filter 77 consisting of clopen increasing sets and clopen decreasing sets has an
adherence point. Let % (&, resp.) be the family of all decreasing(increasing,
resp. ) members of 77, then (¥, &) is clearly a base for a clopen bifilter.
Thus there is a maximal clopen bifilter (&, %) with(¥#, &€)S(Z#, % ). Since

¥ % —x for some ¥&X, x 1s obviously an adherence point of 7 .

2. O-dimensional ordered compactification

Let ZCO denote the full subcategory of ZO formed by all compact objects.
Since every O-dimensional ordered space is Hausdorff, a O-dimensional ordered

space 1s compact if and only if it is a 2-compact ordered space. Hence ZCO is
an epireflective subcategory of Z0O [C.H.], [P3].
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In what follows, X will always denote a O-dimensional ordered space. Now
we follow the way of Wallman type order compactification introduced by Choe

and Park [C.P.] to get the ZCO-reflection of X, employing maximal clopen
bifilters instead of maximal closed bifilters.

Let {3X be the collection of all maximal clopen bifilters on X. We define a
relation < on {y&X as follows: (5, €)<(F, * ) if and only if FE.F and
«C % . Then the relation < is clearly a partial order on {,X.

REMARK 2.1. Considering the characteristic map of a clopen increasing set
(the complement of a clopen decreasing set, resp.), one can easily concliude

by remark 1.9 that (&%, €) < (&, Z ) if and only if for any «EC(X), lim
uw(F " @) <lim u(F" ).

For a clopen decreasing set A and a clopen increasing set B in X, define

A'={(F, DEL X AET), B'={(F, @IELX : BEZ).

Then it is clear that A° (B’, resp.) is decreasing (increasing, resp.) and that

for clopen decreasing sets 4, A4’, (AﬂA’)dzAdﬂA’d, and for clopen increasing

sets B, B’, (BﬂB’)sziﬂB’i. Hence {AdﬂBI . A is a clopen decreasing set and
B is a clopen increasing set} forms a base {or a topology on coX, which will be

denoted by ¥ *. Since COX—Adz(X—A)f and COX—Bf:(X—B)d, A% is clopen
decreasing and B’: 1S clopen increasing in (COX, F* ). For the brevity,
(COX, S *, <) will be as before denoted by {,X. IFurthermore, let {;: X—{( X
be the map defined by {y(x)=(Z(x), F(x)).

We recall that a continuous isotone f : X —>Y is called 2-extendable if for
any u=C(X), there is v&C(Y) with vf=u.

LEMMA 2.2. The map (. X —{;X is a dense embedding in OTOP such that
{y is 2-extendable.

PROOF. It 1s a routine verification that {y is 1—1 isotone and that for any
clopen decreasing set A4, CO(A)zAdﬂCO(X) and {or any clopen increasing set B,
COCB)-—-B"'-F]CO(X). Hence {, is an embedding. Furthermore, for any (5, &)
<L, X, CO(va) converges to (%, &) in {,X, so that £, is dense. For any
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#=C(X), define u:{,X—>2 by u((F, &))=Ilim u(va). Then one has
ul,=wu, and % is isotone by remark 2.1. Hence it remains to show the continuity
of #. Suppose #((F, &€))=1 (the case u((F, £€))=0is similar). Let B=
(1), then B&¥. Hence B' is a neighborhood of (%, <) and W(B)=1, so
that # is continuous at (%, &). This completes the proof.

THEOREM 2.3. For any O-dimensional ordered space X, the dense embedding
Co+ X—>CyX is the ZCO-reflection of X.

PROOF. Suppose (%, €)X (Z°, Z ) in CoX. Then by remark 2.1, there is
#EC(X) such that lim «(# ' #)=0 and lim (¥ ' @)=1. Let #:{,X —> 2
be the extension of u, i.e. @l =u, then #((.F", @) =ulim{(F &N =lim @,

(va)zlim u(ﬂ'vf)zl, and similarly one has «((&#°, % ))=0. Thus by
corollary 1.4 together with the definition of the topology on (X, { X is a
(X 1s now a dense embedding into

O-dimensional ordered space. Since {,: X
the Hausdorff space, {, is uniquely 2-extendable. Since ZCO is the category of

2-compact ordered spaces, it is enough to show that {,X is compact. Let #~
be a filter base on {,X consisting of the subbasic closed sets, ¥ ={4 : Aley 1

and &={B: Bi &#7"}. Then it 1s obvious that (¥, &) 1s a base for a clopen
bifilter. Let(&#”, %) be a maximal clopen bifilter containing (%, %), then
it is again clear that (Z7, %) belongs to every member of # .

3. Lattice homomorphisms on C(X)

Since 2 is a topological distributive lattice with O and 1, the set C(X) of all
continuous i1sotones on X to 2 1s again a distributive lattice with O and 1 as a
sublattice of the power lattice 2%, In this paper, by lattice homomorphisms we
mean those preserving O and 1. It is clear that C: OTOP——-—aDLatt; is a con-

travariant functor.

PROPOSITION 3.1. There is one-one correspondence between the set SC(X) of

lattice homomorphisms on C(X) to 2 and the set of all maximal clopen bifilters
on X.

PROOF. For any lattice homomorphism % : C(X)—2, let % = {u_l(O) . 1€7);
=0} and f:{v—l(l) : h(v)=1}. Since & preserves 0 and 1, i.e. % is onto, .#
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1 —1

0Ny O)=@Vv) "W
and u_l(l)ﬂv—1(1)=(u/\v)#l(l), (F, &) is a base for a clopen bifilter. In
fact, (&, &) is a base for a maximal clopen bifilter. Indeed, if h(u)=0,

then (¥ v &) converges to O andlif hr(v)=1, then v(F v%”-) converges to 1.
Hence by Proposition 1.8, (%, &) generates a maximal clopen bifilter which
is denoted by (F&r &hr). We note that h(u)zlimu(ﬁ"vf). Let (¥,%) be
a maximal clopen bifilter, then define h(?,g.) : ((X)—2 by k(gr’ ?)(u)zlim

and & are non-empty families of non-empty sets. Since u

w( T ). Again by Proposition 1.8, g ¢y is well defined, and using Remark
1.9 together with the fact that % and & are prime filters with respect to
clopen decreasing sets and clopen increasing sets respectively, k(g’ @) 1s a lattice
homomorphism. It is now obvious that the correspondence h— (% w &) Is

the inverse of the correspondence (%, & )-——-a-k(;, @y This completes the proof.

COROLLARY 3.2. A O0-dimensional ordered space X is compact if and only if
every lattice homomorphism h: C(X)—>2 is fixed, i.e. there is x€X such that
h(w)=u(x) for all wSC(X).

PROOF. This is an immediate consequence from Theorem 1.12 and Proposition
3. 1.

The above corollary amounts to saying that a O-dimensional compact ordered
Space can be recovered by its lattice C(X) of continuous isotones on X to 2.

Using Theorem 2.3, Proposition 3.1, and Theorem 2.2 in [P3], one has the
following:

THEOREM 3.3. Let X be a O-diinensional ordered space. Then the ZCO-reflec-
tion {y: X—C, X of X is given as follows: {,X is the subspace SC(X) of 25
consisting of all lattice homomorphisms on C(X) to 2 and {y(x) (w)=u(x) (xEX,
ue=C(X)).

COROLLARY 3.4. (Priestley [P5])) For any O-dimensional compact ordered space
X , the map (: X—SC(X )'——COX is an isomorphism in CTOP. In particular,
for O-dimensional compact ordered spaces X, Y, X is isomorphic with ¥ z';rz:

OTOP if and only if C(X) is isomorphic with C(Y) as lattices.

COROLLARY 3.5. Let X be a O-dimensional ordered space and Y a O-dimensio-
nal compact ordered space. Then for any lattice homomorphism f . C(Y)—C(X),
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ere ts a unique continuous isotone u : X——Y such that C(u)=/1.

PROOF. Let »:X——Y be the composite of {,: X—{ X=SC(X) and S(f):
SC(X)—>SC(Y). Since pr, S(f)=prs,y wECX)) where pr, denotes the uth
projection, S(f) is continuous isotone. Since SC(Y)=COY:Y, # : X—Y is the

unique continuous isotone with C(#)=/.

4. Concluding remarks

4.1. Using maximal o-zero-dimensional filters in [C.H], Choe and Y. H.
Hong have implicitly constructed the ZCQO-reflection of a O-dimensional ordered
space. We note that the concept of o0-zero-dimensional filters is external but
that of maximal clopen bifilters is internal.

4.2. Using maximal o-completely regular filters whose concept is obviously
external, Choe and Hong have constructed the Nachbin compactification of a
completely regular ordered space ([C.H.]). Hence the problem whether there
is an internal way to characterize the compactification, arises.

4.3. By Corollary 3.5, a 0-dimensional compact ordered space X is charac-
terized by the lattice structure of C(X). It is then a natural question that what

kind of algebra structures of C(X) characterizes the compact ordered space X.

4.4. Since realcompact spaces are characterized by their rings of real con-
tinuos maps, or real z-ultrafilters [G. J.], there arise the same problems
as 4.2 and 4.3 for realcompact ordered spaces, R-compact ordered spaces, O-
dimensional realcompact ordered spaces, and N-compact ordered spaces (N is
the discrete ordered chain of natural numbers).

4.5. In [C.P.] and [P4], using maximal closed bifilters, Choe and Park have
constructed the Wallman type ordered compactification of a convex ordered

topological space with a semi-closed order. Unfortunately, the order on the
compactification need not be semi-closed. However the order on {yX is closed.

Thus it is natural to ask whether there is a method using bifilters or else to
get the compactification with a continuous order (see[P1] for a partial answer).

4.6. For a O-dimensional space X with the discrete order, (5t X——(X
coincides with the Banaschewski's O-dimensional compactification { : X—{X [B].

Sogang University
Seoul, Korea.
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