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QUASI ORDERED BITOPOLOGICAL SPACES II

By T. G. Raghavan

The study of bitopological spaces arose when Kelly ([3]) started investigating
a certain nonsymmetric generalization of metric spaces. These spaces are named
quasimetric spaces by Kelly. Every quasimetric, as noted by Kelly, led to the
consideration of a conjugate quasimetric, this resulting in the study of the
structure of bitopological spaces. These spaces, 1. e., a set endowed with a
quasimetric and its conjugate, as demonstrated by Kelly, satisfy many interesting
pairwise separation properties analogous to those satisfied by metric spaces.
Thus Kelly found that the problem of quasimetrizability of a topological space
(X, 1) leads to the consideration of yet another topology 7° on X whose behaviour
with 7 is in many ways natural. In a recent paper, Raghavan and Reilly ([11])
strongly expressed the view that the study of any nonsymmetric structure which
induces a topology on a set naturally leads to the consideration of a bitopological
space.

The present paper treats the study of ordered bitopological spaces. In fact,
in earlier papers ([9], [10]) the author made a systematic study of bitopological
spaces equipped with an order relation while the present paper is a seyuel to
these papers.

In the sections two and three, pairwise G compact, pairwise & Lindelo!, pairwise
G countably compact spaces are studied. In the fourth section we introduce
what is called the notion of induced orders and demonstrate that every T, space
is weakly orderable in a certain sense made precise in that section. Also we show
that if a topology is compatible with a quasiuniformity as also with its conju
gate, the space is orderable and locally convex. In the fifth section we study
pairwise & perfectly normal spaces and their properties. As i1s usually the case,
many well-known results in unitopological spaces can be obtained as particular

cases by taking the graph G of the order relation to be equal to 4, the graph of
the discrete order relation and setting the two topologies to be one and the same.

1. Preliminaries and notation.

By a quasi ordered sel we mean a set endowed with a relation which is
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reflexive and transitive. If the relation is further anti-symmetric, the set is
said to be partially ordered. Let X be a set endowed with a partial order =. A

B——

subset A of X is said to be decreasing if and only if ¢<b and b&A>acA. The
concept of an zncreasing set is defined dually. In fact the concepts of decreasing
and increasing sets can be defined even in quasi ordered sets. The following are
the abbreviations and notations used in the text.

dec. =decreasing

INC. =Iincreasing

b. t. s. =bitopological space

u.S. C. =upper semi-continuous

l.s. c. =lower semi-continuous

7,cl(A)=The closure of A in the topology Tje
nbd=neighbourhood

L(A)={y :y=x for some xEA4}

M(A)={y : x=y for some x&E A4}

H L;(A)—TThe smallest dec. 7. closed set containing A.

H ?(AJZThe smallest inc. 7, closed set containg A.
A ,<;B<There exists a dec. 7, open set UDA and an inc. 7: open set
VOB such that UNV =4¢.
N ="The set of natural numbers.
It is easy to see that L(A4) is the intersection of all dec. subsets of X which
contain A. Thus it is the smallest dec. set containing A. Dually M(A4) is the
intersection of all inc. subsets of X which contain A. The complement of an

inc. (dec. ) set is dec. (inc. ). A realvalued function f on a quasiordered set is called
monotone (antitone) if x=y>f(x)=f(P)S(x)=f(y)).

2. Pairwise G compact spaces

The following definition of pairwise compactness is due to Kim[4].

DEFINITION 2.1. Let (X,7,, 7o) be ab. t. s. Lett(Z, V)={¢, X, {UUV|U <7.}}
where VET.'J-(Z', 7=1,2;¢#5). If ©(Z, V) is compact for every VE'L']., hen the

space is called pairwise compact.

DEFINITION 2.2. Let (X, 7;, 7,) be a b.t.s. equipped with a partial order
The partial order is said to be weakly continuous if and only if the graph G of

IA
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the partial order is closed in the product topology 7;X7,

DEFINITION 2.3. A pairwise compact b.t.s. (X, 7,,7,) equipped with a weakly

continuous partial order is called pairwise G compact.

We have proved the following result in [9, Theorem 2.7].

LEMMA 2.4. If (X, 7, T,) is a b. t. s. equipped with a weakly continuous
partial order, then if K is 1,(T;) compact then LK) (M(K)) is 7,(Ty) closed.

LEMMA 2.5. Let (X, Ty 'r2) be a pairwise G compact b. t. s. If P is a dec.
(inc.) set and V is a ©, nbd (v, nbd) of P, then there exists a dec. 1, open (inc.
T, open) set U such that PCUCYV.

PROOF. Since 7,
Theorem 2.9], z,cl(X —V) is 7, compact so that M (’1'2C1CX —~V)) is 7, closed by
[.Lemma 2.4 above. If we write U=X—-M (TQCI(X —V)) then U is dec. 7, open set
such that UCV. Also, if x&U, then x&M(z,cl(X-V)), so that there exists
yET,cl(X —-V) with y=<x. Hence it follows that there exists y=x with y&P.
Since P is dec. x€P. Therefore PCU.

closed subset of a pairwise compact space is 7, compact [4,

LEMMA 2.6. Let (X, Ty, 72) be a pairwise G compact b. t. s. If F, and F, are
T, and T, closed subsets of X respectively such that x£y for x&EF, and yEF,,
then there exists an inc. T, nbd U of F, and a dec. t©, nbd V of F, such that
UNV =¢.

PROOF. Since the partial order is weakly continuous, there is an inc. 7; nbd

P of x and a dec. 7, nbd Q of y such that PNQ=¢ whenever x=y by [9,
Proposition 2.2]. This is particular case when xE&F, and yEF,. Let YEF,.

Since F, is 7, compact, there exist inc. 7, nbd U, of x,&F, and dec. 7, nbd V.
of y such that VzﬂUI:gES (=1, 2, 3, -, n)., If Uy=U{U,_- l7=1, 2, 3, ---, #} and
V,=N1V;11, 2, 3, -, n}, then Uy is an inc. 7; nbd of F,, V, is a dec. 7, nbd
of y and U yﬂVy=¢5. Again there exist a finite number of points y JEF), adec.
T, nbd Vy, of Y; and inc. 7; nbd ny of ¥, such that VyjﬂUy!=§I5 (7=1, 2, 3, -,
m) and U{V, |7=1, 2, 3, -+, m}=V is a dec. 7, nbd of F; (since F, is 7, com-
pact). If we set U=|’“|{ijlj=1, 2, 3,--,m}, then U isan inc. 7; nbd of ¥, and
UNV=4¢.

THEOREM 2.7. A pairwise G compact space is pairwise normally ordered.
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PROOF. Recall that [9, Definition 3.1] a b. t. s. (X, 7y, 7,) equipped with

an order relation is pairwise normally ordered if A and B are subsets of X
which are dec. 7, closed and inc. 1, closed respectively and disjoint, then

[~

A2<IB. Now the result [ollows from Lemmas 2.5 and 2. 6.

DEFINITION 2.8. Let (X,7,, 7,) bea b.t.s. Let 7(Z, V)={¢, X, {UUV|U&z,}}
where VE*rj(z', 7=1, 2; i#7). If 7(Z, V) is Lindelof for every VET}-, then the

space is called pairwise Lindelof.

- LEMMA 2.9. Let (X, 7|, 7o) be a pairwise Lindelof b. t. s. Then if A is T
closed then A is ©; Lindelof.

PKOOF. The proof of this Lemma runs analogous to that of [4, Theorem
2.9].

THEOREM 2.10. A pairwise regular pairwise Lindelof b. 1. s. is pairwise

normal.

PROOF. Let A and B be 7, and 7, closed sets respectively which are disjoint.
Since the space is pairwise regular, for each point e&A4, there exists a 7, open
set U_ such that 7,cl(U,) does not meet B. Similarly for each point &8, there
cxists 7, open set V, such that 7,cl(V,) does not meet A. Since A is 7, Lindeldf,
we have a sequence of 7, open sets {U |n&N} covering 4. This is a subcovering
of {U le=A}. Similarly since the set B is 7, Lindeloi, we have a sequence of T)
open sets {Vn!?zEN} covering B. This i1s again a subcovering ol {V,|é&B}. Now
set U’ =U,—Ul{ncl(V D lg=n}, V', =V —Ulr clUpIlp=m}. Take U=U{U’,]
nEN} and V=U{V’ Im&N}. Then UDA, VOB, UMNV=¢ and U and V are 5

and 7, open respectively, so that the space is pairwise normal.

DEFINITION 2.11. A b. t.s. (X, 7,, 7o) equipped with a quasiorder whose

graph is G is called pairwise G regular if and only if given dec. ¢ | closed set
A (a point x&B) and a point x&A (inc. 7, closed set B) there exist sets U a1 d
V such that ACU (x&U) and x&V(BCV), U and V are dec. 7, open and inc.
7, open sets respectively and UNV =0o. e

THEOREM 2.12. Every pairwise Lindelof pairwise G regular space is pairwise
normaliy ordered.
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PROOF. Let A and B be dec. 7, closed and inc. 7, closed sets such that
ANB=¢. Since the space is pairwise G regular, for each point ¢&A, there
exists a dec. 7, open set U, such that Hll (U )NB=¢. Similarly for each d&B,

there exists an inc. T, open set V, such that H;H (Vb)ﬂA:qu. Since A and B are
respectively 7, and 7; Lindelof, there is a subcovering {U, |[#»EN} of {U,le&A}

and {V,|nEN} of {V,|bEB}. Set U, =U,—~U{H,(V )|r=p} and V' ,=V ~U{H"
(U )|r=gq}. Again set U=U{U’plpEN}, V=U{V", l¢&=N}. U and V are dec.7,
open and inc. 7, open sets such that UDA4, VOB and UNV=¢. Hence the

space is pairwise normally ordered.

The notion of a P-space is well-known. A topological space is called a P-space
if and only if every G5 set is open. A b.t.s. (X, Ty T,) is called a bitopological
(P) space if and only if (X,7,) and (X, 7,) are both P-spaces. Let us abbreviate
bitopological (P) space as b. t. () space.

Analogous to [9, Theorem 2.7] the following proposition can be proved.

PROPOSITION 2.13. Let (X, 7y, 7,) be a b. t. (P) space equipped with a weakly
continuous partial order. If K is t/(1,) Lindelof, then M(K) (L(K)) is 7,(1))

closed.

Now let us define pairwise G Lindelof bitopological spaces.

DEFINITION 2.14. A b.t.(P) space (X, 7y, 7,) equipped with a partial order
whose graph is G is called pairwise G Lindeldf if and only if the space 1s pair-

wise Lindelof and G is weakly continuous.
In the same way as we proved 2.5, 2.6 and 2.7, the {ollowing results also can

be proved.

PROPOSITION 2,15. Let X be a pairwise G Lindelof b. t.(P) space. If Qisa
dec. (inc.) subset of X and V is a t,(t)) nbd of Q, then there exists a dec. Ty

opern (inc. T, open) set U such that QCUCV.

PROPOSITION 2.16. Let X be a pairwise G Lindelof b.t. (P) space. If F , and

F, are T, and 1, closed subsets of X respectively such that x=y for x&F, and

y&=F,. Then there exists an inc. v, nbd U and a dec. T, nbd V such that F,CU,
F\CV and UNV =¢.

PROPOSITION 2.17. A pairwise G Lindelof b. t.(P) space is pairwise norm-
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ally ordered.

3. Further characterizations.

DEFINITION 3.1. Let (X, 74, 7:2) be a b.t.s. equipped with a partial order

whose graph is G. The space is called pairwise Goe if and only if for each
reX, Lx)=N{V |iEN} and M(x)=N{W,i&N} where ecach V, is a dec. 7,

open set and each W, is an inc. 7, open set.

PROPOSITION 3.2. If (X, Tys To) s @ b. t. s. which is pairwise Go, then L(x)

is T, closed and M(x) is 7o closed.

PROOF. Suppose y&L(x). Then y=x so that M(y)NL(x)=¢. Hence x&EM(y).
Thus there exists an inc. 7; open set W such that x&W and WOM(y). In other
words, y&W and WNL(x)=¢ so that L(x) is 7, closed. Similarly one can prove

that M(x) 1s 7, closed.

DEFINITION 3.3. Let (X,7,7,) be a b.t.s. equipped with a partial order

whose graph is G. The space is called pairwise GAB if and only if for cach x=X,
Lix)=N {Hi (VI.) l7&N} and M(x)=0) {HEE(V/Q]:'EN} where each V', is a dec. 7,

open set contalning x and cach }¥; is inc.7, open set containing x.

It 1s to be noted that when T, =7, and =4, the discrete order, the Definitions

"1 and 3.3 reduce to the definitions of E, and E, spaces of Aull [1]. Also let

us call a pair /ise G space to be pairwise £, whenever G=4.

PROPOSITION 3.4. Let (X, 7y, 7,) be a b. t. s. equipped with a partial order
whose graph ts G. Consider the following statements.
(1) X s pairwise Gc.
(1) X s pairwise GB.
(i11) G is weakly continuous.
(v) L(x) and M(x) are T, and Ty closed subsets of X respectively for each
re=X.
Then the following implications hold.
() =2 (1)
U U
(iii)) = (v).
PROOF. That (1)=>(v) is precisely the Proposition 3.2 above.
That (111)>(iv) is proved in {9, Proposition 2. 3].
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(D). Let {V, |/&N} be a sequence of dec. 7, open sets containing x such
that L(x)=ﬂ{Hi(Vf)|z'EN}. If y&L(x), then y=x&V . for each 7. Since V. is
decreasing, y&V . for each 7 so that L(x)CN {.Vz.\z'GEN }. Also if yeN{V |iEN},
then y&V .CH i (V') for each ¢ so that y&N{H i (V) lieN}t=L(x). Therefore
Lx)=N{V l/&N}. Similarly M(x)=N{W ,[i=N} where each W;: Is an Inc. 7,

open set.
(D)= i), If x=y, then y&EL(x) so that there exists a dec. T, Open set V such

that x&V and yq"EHi(V). Let U:X—-Hi(V). Clearly V and U are dec. T, Open
set and inc. 7, open set respectively such that x&V, y&U and UNV =¢. Hence

by [9, Proposition 2.2] G is weakly continuous.

PROPOSITION 3.5. If (X,7.,7y) is pairwise G regular themn, in Proposition
3.4, (D=1 and Qi)«>(iv).

PROOF. (1)=>((1). Let {V.|i&N} be a countable collection of dec. 7, open sets
such that Z(x)=) iV li&N}. Now ye&L(x)

y&EV  for some &N and x&EM(y).

V. NM(y)=¢.

—(Since the space is pairwise & regular), there cxists disjoint sets W
and U such that x&W,, M(y)CU
open respectively.

DxEP CX —-U_ where P,=W NV, and yg&X—-U, which is dec. 7 closed.

>xEL(x)CP,CH,(P)CX -U_ and y&H(P,) for some #EN.

SyEN{H,(P,)|iEN}.

Also, L(x)CHi(P!.) for each 7z, so that L(x)Zf']{Hi(f’f.)lz'EN}. Similarly we

12

» W, and U arc dec. 7, open and Inc. T

can prove the existence of a countable collection (W [7=} Of 1nc. 7; open

subsets of X such that M(x)=N{H, Q) |iEN}.

That (ov)=>(@i11) follows easily on using the fact that the space is pairwise G
regular.

PROPOSITION 3.6. Let (X,ty, T,) be a pairwise G3 b. t. s. If K is 7,(7)
countably compact, then L(K)(M(K)) is t,(7,) closed.

PROOF. Let yEX —~L(K). Since the space is pairwise &5 theie exists a count-
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able collection {Q.|/&EN} of inc. 7, open sets each containing y such that M(y)
=N{H,(Q)|iEN}. Since M(PDNL(K)=¢, KCLK)CX -M(»CU{X -H, Q)]
IEN}. Hence there exists a finite number of integers ny, M5 **+, %, such that
KCU{X—-HSz (an)\j'=l, 2, 3, -+, r}; (notice that K is 7, contably compact).
Since each X —H,(Q,) is dec., KCLK)CU{X -H,(Q,)1/=1,2,3,, r} =X -
N{H,Q,)1j=1, 2, 3, -, 7} so that ZEIN(N{Q, I7=1, 2, 3, -, 7}) CLEEOIN(N
{H;’(in)lj=1, 2, 3, -, 7})=¢. Hence L(K) is 7, closed.

Let us define a Kim-type pairwise countable compactness.

DEFINITION 3.7. Let (X, 7, '52) beab.t.s. Let 7(Z,V)={¢p, X, {UUV|U ETJ.}}
where VE'rj (7, 7=1, 2; 1#£7). If 7(Z,V) is countably compact for all Vé&r j(z',

7=1, 2; 7#7), then the space is called pairwise countably compact.
The proof of the following Proposition is similar to [4, Theorem 2.9].

PROPOSITION 3.8. [In a pairwise countadly compact b.t.s. (X, Ty To), every T,

closed subset is T countably compact.

It can be easily seen that if a b. t.s. is both pairwise E, and pairwise countably

compact then the two topologies become equal. We state this result without proof.

PROPOSITION 3.9. If (X, 7y, T,) is pairwise E., then t,=7,1f either the space
is pairwise countably compact or both the topologies are individually countably

compact.

THEOREM 3.10. A pairwise GBS b. t. s. is patrwise G regular if lthe space is

paitrwise countably compact.

PROOF. Let x&X and A be a dec. 1, closed set with xé&A4. Since the space is

pairwise GB, there exists a countable collection {W |/&EN} of inc. 7; open sets
each containing x such that M(x)=() {HSZ(WZ-) [iEN}. Since A is 7, countably
compact and X —ADM(x), there exist positive integers n,, #,, -, #, such that
ACU{X-—H;”(W?H)IJEI, 2, 3, -+, 7}=U, say and x€N{W, /=1, 2, 3,-,7} =V,

say. Then U and V are the required sets given in Definition 2.11. If we had
started with an inc. 7, closed set B and an element x&5, In a similar way

we would have obtained the required sets U and V of the Definition 2.11. Hence

the space is pairwise G regular.
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4. Order and quasi-uniformity

- In this section we discuss order induced by topological spaces. Pervin [8] and
Csaszar [2] proved that every topological space is quasi-uniformizable. The notion
of quasi-uniformity was also discussed by Nachbin [6] and he calls the same
“semi-uniformity”. We call a topological space weakly orderable if there exists
an order such that the set of all inc. (or dec.) open nbds form a base for the
topology. We also call a b. t. s. (X, 7y, 75) orderable if and only if the set of

all dec. 7, open sets form a base for 7, and the set of all inc. 7, open sets form

a base for Ty

It will be recalled that a quasi-uniformiiy on a set X is a filter Z on XXX
such that the diagonal 4 is contained in each member of Z° and for each UEZ/,
there is a VEZ such that V-V CU.

A subset C of a quasiordered set X is said to be convex if and only if a, b=C
and ¢=x=<bi>x&C. The intersection of an inc. and a dec. set is convex. If X

is a topological space equipped with a quasiorder, X is said to be locally convex
[6, p. 26] if and only if the collection of convex nbds of every point of X is a

base for the nbd system of this point.

THEOREM 4.1. FEwvery topological space is weakly orderable. Every pairwise

completely regular b. {. s. is orderable.

PROOF. The proof of the {irst part of the theorem is actually bascd on what
is given in [6, p.58]. Let us, for the benefit of the reader, outline the proof.
Let (X, 7) be an arbitrary topological space. Then there exists a quasi-uniformity,
say, in particular, Pervin’s quasi-uniformity, % which is compatible with <.
Let G=N{U|U&%}. Then G is the graph of a quasi-order on X. Let x»&X
and A be a 7 nbd of x. Then there exists UEZ such that U(x)= A. Then by
the definition of quasi-uniformity there exists a W&% such that WeWCU. Let
us write B=X—H’(X—W(x)) where H!(S) stands for the smallest dec. 7 closed
set that contains S. Then it is easily seen that BCU(x). That B is nonempty
is also clear. Hence the result.

The proof of the second part is as follows. Let (X, 7,, 75) be pairwise comp-

letely regular. Then there exists a quasi-uniformity # such that 7/ 1s compatible

with 7, and its conjugate Z s compatible with 7,. Let the graph G of the

quasiorder be given by G=N{U|UEZ'}. With respect to &, by virtue of (a), the
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space X is orderable.

THEOREM 4.2. If (X, ©) is a topological space such that T is self conjugate

in the sense that there exists a quasi-uniformity 7/ with the property 7/ and y
are both compalible with 7, then X admits an order relation with respect to which
the space is locally convex.

THEOREM 4.3. The quasiorder relation induced by T as given in Theorem 4.1
above, is a partial order if and only if the space is T\.

PROOF. Let G=N{U|UEZ'}. Since G is a partial order, GI’]G—1=A, the dia-

gonal. Hence if (x, y)&EG then (x, y)%G—l so that y&U (x) for some UE&Z and
there exists at least one V&7 such that x&&£V ().

We now present three results without proof before concluding this section.

PROPOSITION 4.4. The quasiorder induced by © as given in Theorem 4.1 is
discrete if and ounly if the space is T,.

PROPOSITION 4.5. The quasiorder induced by T as given in Theorem 4.1 is an
equivalence relation if and only if the space is Ry, and further the equivalence

class of x is cl({x}).

PROPOSITION 4.6. The quasiorder induced by T as given in Theorem 4.1 is an
equivalence relation whose graph is closed in the product space X XX if and only

if the space is R..
9. Pairwise &G perfectly normal spaces.

In this section we introduce the notion of pairwise G perfectly normal spaces
and study their properties.

DEFINITION 5.1. Let (X, Ti»To) be a b. t. s. equipped with a quasiorder relation
whose graph is &¢. A set A(CX) is called 'ché if and only if A is the counta-

ble intersection of dec. 7. open sets. A subset A is called TI.G? if and only if 4

1s the countable intersection of inc. 7, open sets.

DEFINITION 5.2. Let (X,7;,75) beab.t.s. equipped with a quasiorder relation

whose graph is &. The space is pairwise G perfectly normal if and only if it is

o . ! .
pairwise normally ordered and every dec. 7, closed set is 7,G; and every inc. 7,
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closed set is (3] G?.

DEFINITION 5.3. A b. t.s. (X, 7|, 7,) equipped with a quasiorder relation
whose graph is G is called order second countable if and only if 7, has a count-
able base consisting of inc. 7, open sets and 7, has a countable base consisting
of dec. 7, open sets.

‘The notions of pairwise complete normality and pairwise perfect normality of

a b. t. s. not necessarily equipped with a quasiorder were discussed in [5], [7]
and [12].

THEOREM 5.4. If a b.t. s. (X, 7y, T,) equipped with a qusiorder relation

(whose graph is G) is pairwise G regular and order second countable, then the
space 1s patrwise G perfectly normal.

PROOF. Let A be a dec. 7, closed set. Let us take A#X. (If A=X, it is

trivially TZG;). Suppose xZA. Then there exists a inc. 7; open set U, such
that x&U CH ’2” U)CX—-A. Let a={V _|n&EN} be a countable base for 7; where

each V' is inc. 7, open. Then clearly xEVﬂ(x)CX — A for some positive integer
n(x)EN and V€. Therefore Hy (V, )CX~A. Hence H, V. )NA=¢s0
that A=N{X —-H;” (Vn(x))IxEA}. Thus A is Tng. Similarly one can prove that

every Inc. 7, closed subset of X is ’I’zG;:. Since the space is order second count-

able, both the topologies are second countable and hence the space is pairwise
Lindelof. Since the space is given to be pairwise G regular, by virtue of Theorem
2.12, the space is pairwise normally ordered and hence the space is pairwise G
perfectly normal.

An immediate consequence of the abovc theorem will be the {ollowing.

THEOREM 5.5. Let (X, Ty, To) be a pairwise completely regular space. Let T,
and t.,, be second countable. Let 7' be the quasi-uniformity compatible with T, such

that 7" be the one compatible with t,. Let G be the order gemerated by % .
Then the space is pairwise G perfectly normal.

THEOREM 5.6. Let (X, Ty, T,) be @ b. t. s. equipped with a quasiorder relation

whose graph is G. Then X is pairwise G perfectly normal if and only if for
each non empty dec. Ty closed set A and a point bEA, there exists a real-valued
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monotone function f on X such that fﬁl(O)=A, f(b)=1, fis 1, u s. c. and
Ty l.s.c and f(X)CI[O,1] and for eqch nonempty inc. T, closed set B and a
pafnta&B, there is a real-valued antitone function ¢ on X such that g#1(0)=B,
g®=1, gist u s ¢ and 751, s. ¢c. and g(X)CIO, 1].

PROOF. Sufficiency. Let X satisfy the conditions mentioned in the theorem.
Let A and B be dec. 7, closed and inc. 7, closed sets which are disjoint. Let
aOEA and 0,&8. Then there exists a function f : X— [0, 1] such that

(i) fis 7, u.s. c. and 7; L. s. C.

(11) f is monotone.

(i) F '0)=A4 and f(5)=1.

Also, there exits a function g : X— [0, 1] such that

(i) g is 7, u. s. ¢. and 7, L s. c.

(ii) g is antitone.
(iii) ¢ '(0)=B and g(a,)=1.
Now, if we write z=f—g, then clearly % is monotone To U S. C.and 7, L s. .

Further 2{(a) <0 for all e&A and #(56)>0 for all 6&B. If h_l (—oco, 0)=U and
h_l(O, c0)=V, then U and V are dec. 7, open and inc. 7, open sets which are

disjoint. Further UDA and VDB5. Hence the space is pairwise normally ordered.
Let A be any dec. T, closed set. Suppose 0&=A. Then there exists a function

f i+ X—>[0,1] such that
(1) f is Ty U. S. C. and 7, L s. C.
(ii) f is monotnne.
(i) £ '(0)=A4 and f(B)=1.
Also A=ﬂ{f_l(—m, —}z—)I?zEN}. As f is monotone fﬂl(—m, —}z—) is dec.

: : —1 :
for each n&N. Since f is 75 u. s. ¢ f (—oo, %—) is 7, open. Thus A is

TéGg. Similarly we can prove that every inc. 7, closed set is a 'rlG?. Hence the
space is pairwise & perfectly normal.

Ne‘cessit‘y. Assume the space to be pairwise G perfectly Ilorma,l. Let A be a
nonempty dec. 7, closed subset of X. Let :rOGEA and Azlﬂ{VnInEN } where each
V. is'a dec. 7, open set. Thus there exists an integer #,such that 2V, . Let
G, =MV I1=rn=n,}. G;is a dec. 7, open set and ACG,. Since the space is
pairwise normally ordered there exists a dec. 7, open set U, such that ACU | C
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H.(U)CG. Let us define G,=V, .| NU,. Then G, js a dec. 7, open set such
that-ACG2CH i (G,)CG,. We can now assume that we have defined G to G‘,;

such that & is a dec. 7, open selt containing A and A i(an)Can-l and G, ' C
V , for each m=2, 3, ---, k& Then let G, =V, ., NU, whereU, is a dec.

Hot+-M—

T, open set such that A CUkCHi (U )CG,. Thus we construct inductively a

sequence G, of dec. 7, open sets such that
(1) A=N{G,|»EN}
(i) H{(G,,  )CG CX—M(xy

for each n&N. In the same way as we constructed in the proof of [9,
Theorem 3.3], it is possible now to construct a function f : X—— [0, 1] such that
(1) fis T, u.s. c. and 7, L. s. c.

(i) f is monotone
Gii) f7 (@ =4 and f(xy)=1.

Similarly the other parts of the necessary conditions follow.

University of Auckland,
Auckland,
NEW ZEALAND.
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