Kyungpook Math. J.

QUASI ORDERED BITOPOLOGICAL SPACES II

By T. G. Raghavan

The study of bitopological spaces arose when Kelly ([3]) started investigating a certain nonsymmetric generalization of metric spaces. These spaces are named quasimetric spaces by Kelly. Every quasimetric, as noted by Kelly, led to the consideration of a conjugate quasimetric, this resulting in the study of the structure of bitopological spaces. These spaces, i. e., a set endowed with a quasimetric and its conjugate, as demonstrated by Kelly, satisfy many interesting pairwise separation properties analogous to those satisfied by metric spaces. Thus Kelly found that the problem of quasimetrizability of a topological space (X, τ) leads to the consideration of yet another topology τ^{\prime} on X whose behaviour with τ is in many ways natural. In a recent paper, Raghavan and Reilly ([11]) strongly expressed the view that the study of any nonsymmetric structure which induces a topology on a set naturally leads to the consideration of a bitopological space.
The present paper treats the study of ordered bitopological spaces. In fact, in earlier papers ([9], [10]) the author made a systematic study of bitopological spaces equipped with an order relation while the present paper is a sequel to these papers.
In the sections two and three, pairwise G compact, pairwise G Lindeloff, pairwise G countably compact spaces are studied. In the fourth section we introduce what is called the notion of induced orders and demonstrate that every T_{0} space is weakly orderable in a certain sense made precise in that section. Also we show that if a topology is compatible with a quasiuniformity as also with its conju gate, the space is orderable and locally convex. In the fifth section we study pairwise G perfectly normal spaces and their properties. As is usually the case, many well-known results in unitopological spaces can be obtained as particular cases by taking the graph G of the order relation to be equal to Δ, the graph of the discrete order relation and setting the two topologies to be one and the same.

1. Preliminaries and notation.

By a quasi ordered set we mean a set endowed with a relation which is
reflexive and transitive. If the relation is further anti-symmetric, the set is said to be partially ordered. Let X be a set endowed with a partial order \leqq. A subset A of X is said to be decreasing if and only if $a \leqq b$ and $b \in A \Rightarrow a \in A$. The concept of an increasing set is defined dually. In fact the concepts of decreasing and increasing sets can be defined even in quasi ordered sets. The following are the abbreviations and notations used in the text.
dec. $=$ decreasing
inc. $=$ increasing
b.t.s. = bitopological space
u.s.c. =upper semi-continuous
l.s.c. $=$ lower semi-continuous
$\tau_{i} \operatorname{cl}(A)=$ The closure of A in the topology τ_{i}.
nbd $=$ neighbourhood
$L(A)=\{y: y \leqq x$ for some $x \in A\}$
$M(A)=\{y: x \leqq y$ for some $x \in A\}$
$H_{i}^{l}(A)=$ The smallest dec. τ_{i} closed set containing A.
$H_{i}^{m}(A)=$ The smallest inc. τ_{i} closed set containg A.
$A{ }_{2}<_{1} B \Leftrightarrow$ There exists a dec. τ_{2} open set $U \supset A$ and an inc. τ_{1} open set $V \supset B$ such that $U \cap V=\phi$.
$N=$ The set of natural numbers.
It is easy to see that $L(A)$ is the intersection of all dec. subsets of X which contain A. Thus it is the smallest dec. set containing A. Dually $M(A)$ is the intersection of all inc. subsets of X which contain A. The complement of an inc. (dec.) set is dec. (inc.). A realvalued function f on a quasiordered set is called monotone (antitone) if $x \leqq y \Rightarrow f(x) \leqq f(y)(f(x) \geqq f(y)$).

2. Pairwise G compact spaces

The following definition of pairwise compactness is due to Kim [4].
Definition 2.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b. t. s. Let $\tau(i, V)=\left\{\phi, X,\left\{U \cup V \mid U \in \tau_{i}\right\}\right\}$ where $V \in \tau_{j}(i, j=1,2 ; i \neq j)$. If $\tau(i, V)$ is compact for every $V \in \tau_{j}$, hen the space is called pairwise compact.

DEFINITION 2.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s. equipped with a partial order \leqq. The partial order is said to be weakly continuous if and only if the graph G of
the partial order is closed in the product topology $\tau_{1} \times \tau_{2}$.
DEFINITION 2.3. A pairwise compact b.t.s. (X, τ_{1}, τ_{2}) equipped with a weakly continuous partial order is called pairwise G compact.

We have proved the following result in [9, Theorem 2.7].
LEMMA 2.4. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a b. t. s. equipped with a weakly continuous partial order, then if K is $\tau_{2}\left(\tau_{1}\right)$ compact then $L(K)(M(K))$ is $\tau_{1}\left(\tau_{2}\right)$ closed.

LEMMA 2.5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise G compact b.t.s. If P is a dec. (inc.) set and V is a $\tau_{2} n b d\left(\tau_{1} n b d\right)$ of P, then there exists a dec. τ_{2} open (inc. τ_{1} open) set U such that $P \subset U \subset V$.

PROOF. Since τ_{2} closed subset of a pairwise compact space is τ_{1} compact [4, Theorem 2.9], $\tau_{2} \mathrm{cl}(X-V)$ is τ_{1} compact so that $M\left(\tau_{2} \mathrm{cl}(X-V)\right)$ is τ_{2} closed by Lemma 2.4 above. If we write $U=X-M\left(\tau_{2} \operatorname{cl}(X-V)\right)$ then U is dec. τ_{2} open set such that $U \subset V$. Also, if $x \notin U$, then $x \in M\left(\tau_{2} \operatorname{cl}(X-V)\right)$, so that there exists $y \in \tau_{2} \operatorname{cl}(X-V)$ with $y \leqq x$. Hence it follows that there exists $y \leqq x$ with $y \notin P$. Since P is dec. $x \notin P$. Therefore $P \subset U$.

LEMMA 2.6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise G compact b.t.s. If F_{1} and F_{2} are τ_{1} and τ_{2} closed subsets of X respectively such that $x \$ y$ for $x \in F_{2}$ and $y \in F_{1}$, then there exists an inc. τ_{1} nbd U of F_{2} and a dec. $\tau_{2} n b d V$ of F_{1} such that $U \cap V=\phi$.
PROOF. Since the partial order is weakly continuous, there is an inc. τ_{1} nbd P of x and a dec. $\tau_{2} \operatorname{nbd} Q$ of y such that $P \cap Q=\phi$ whenever $x \leq y$ by [9, Proposition 2.2]. This is particular case when $x \in F_{2}$ and $y \in F_{1}$. Let $y \in F_{1}$. Since F_{2} is τ_{1} compact, there exist inc. $\tau_{1} \operatorname{nbd} U_{i}$ of $x_{i} \in F_{2}$ and dec. $\tau_{2} \operatorname{nbd} V_{i}$ of y such that $V_{i} \cap U_{i}=\phi(i=1,2,3, \cdots, n)$. If $U_{y}=\cup\left\{U_{i} \mid i=1,2,3, \cdots, n\right\}$ and $V_{y}=\cap\left\{V_{i} \mid 1,2,3, \cdots, n\right\}$, then U_{y} is an inc. τ_{1} nbd of F_{2}, V_{y} is a dec. τ_{2} nbd of y and $U_{y} \cap V_{y}=\phi$. Again there exist a finite number of points $y_{j} \in F_{1}$, a dec. $\tau_{2} \operatorname{nbd} V_{y_{j}}$ of y_{j} and inc. $\tau_{1} \operatorname{nbd} U_{y_{j}}$ of F_{2} such that $V_{y_{j}} \cap U_{y_{j}}=\phi(j=1,2,3, \cdots$, m) and $\cup\left\{V_{y_{j}} \mid j=1,2,3, \cdots, m\right\}=V$ is a dec. τ_{2} nbd of F_{1} (since F_{1} is τ_{2} compact). If we set $U=\cap\left\{U_{y_{j}} \mid j=1,2,3, \cdots, m\right\}$, then U is an inc. τ_{1} nbd of F_{2} and $U \cap V=\phi$.
THEOREM 2.7. A pairwise G compact space is pairwise normally ordered.

PROOF. Recall that [9, Definition 3.1] a b. t. s. $\left(X, \tau_{1}, \tau_{2}\right)$ equipped with an order relation is pairwise normally ordered if A and B are subsets of X which are dec. τ_{1} closed and inc. τ_{2} closed respectively and disjoint, then $A_{2}<{ }_{1} B$. Now the result follows from Lemmas 2.5 and 2.6.

DEFINITION 2.8. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s. Let $\tau(i, V)=\left\{\phi, X,\left\{U \cup V \mid U \in \tau_{i}\right\}\right\}$ where $V \in \tau_{j}(i, j=1,2 ; i \neq j)$. If $\tau(i, V)$ is Lindelöf for every $V \in \tau_{j}$, then the space is called pairwise Lindelöf.

LEMMA 2.9. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise Lindelöf b.t.s. Then if A is τ_{j} closed then A is τ_{i} Lindelöf.

PROOF. The proof of this Lemma runs analogous to that of [4, Theorem 2.9].

THEOREM 2.10. A pairwise regular pairwise Lindelöf b.t.s. is pairwise normal.

PROOF. Let A and B be τ_{1} and τ_{2} closed sets respectively which are disjoint. Since the space is pairwise regular, for each point $a \in A$, there exists a τ_{2} open set U_{a} such that $\tau_{1} \mathrm{cl}\left(U_{a}\right)$ does not meet B. Similarly for each point $b \in B$, there cxists τ_{1} open set V_{b} such that $\tau_{2} \mathrm{cl}\left(V_{b}\right)$ does not meet A. Since A is τ_{2} Lindelöf, we have a sequence of τ_{2} open sets $\left\{U_{n} \mid n \in N\right\}$ covering A. This is a subcovering of $\left\{U_{a} \mid a \in A\right\}$. Similarly since the set B is τ_{1} Lindelöi, we have a sequence of τ_{1} open sets $\left\{V_{n}!n \in N\right\}$ covering B. This is again a subcovering of $\left\{V_{b} \mid b \in B\right\}$. Now set $U^{\prime}{ }_{n}=U_{n}-\cup\left\{\tau_{2} \mathrm{cl}\left(V_{q}\right) \mid q \leqq n\right\}, V_{m}^{\prime}=V_{m}-\cup\left\{\tau_{1} \operatorname{cl}\left(U_{p}\right) \mid p \leqq m\right\}$. Take $U=\bigcup\left\{U^{\prime}{ }_{n} \mid\right.$ $n \in N\}$ and $V=U\left\{V^{\prime}{ }_{m} \mid m \in N\right\}$. Then $U \supset A, V \supset B, U \cap V=\phi$ and U and V are τ_{2} and τ_{1} open respectively, so that the space is pairwise normal.

DEFINITION 2.11. A b. t. s. $\left(X, \tau_{1}, \tau_{2}\right)$ equipped with a quasiorder whose graph is G is called pairwise G regular if and only if given dec. τ_{1} closed set A (a point $x \notin B$) and a point $x \notin A$ (inc. τ_{2} closed set B) there exist sets U ald V such that $A \subset U(x \in U)$ and $x \in V(B \subset V), U$ and V are dec. τ_{2} open and inc. τ_{1} open sets respectively and $U \cap V=\phi$.

THEOREM 2.12. Every pairwise Lindelöf pairwise G regular space is pairwise normaliy ordered.

PROOF. Let A and B be dec. τ_{1} closed and inc. τ_{2} closed sets such that $A \cap B=\phi$. Since the space is pairwise G regular, for each point $a \in A$, there exists a dec. τ_{2} open set U_{a} such that $H_{1}^{l}\left(U_{a}\right) \cap B=\phi$. Similarly for each $b \in B$, there exists an inc. τ_{1} open set V_{b} such that $H_{2}^{m}\left(V_{b}\right) \cap A=\phi$. Since A and B are respectively τ_{2} and τ_{1} Lindelof, there is a subcovering $\left\{U_{n} \mid n \in N\right\}$ of $\left\{U_{a} \mid a \in A\right\}$ and $\left\{V_{n} \mid n \in N\right\}$ of $\left\{V_{b} \mid b \in B\right\}$. Set $\cup_{p}^{\prime}=U_{p}-U\left\{H_{2}^{m}\left(V_{r}\right) \mid r \leqq p\right\}$ and $V_{q}^{\prime}=V_{q}-\cup\left\{H_{1}^{l}\right.$ $\left.\left(U_{r}\right) \mid r \leqq q\right\}$. Again set $U=\bigcup\left\{U_{p}^{\prime} \mid p \in N\right\}, V=\bigcup\left\{V_{q}^{\prime} \mid q \in N\right\} . U$ and V are dec. τ_{2} open and inc. τ_{1} open sets such that $U \supset A, V \supset B$ and $U \cap V=\phi$. Hence the space is pairwise normally ordered.

The notion of a P-space is well-known. A topological space is called a P-space if and only if every G_{δ} set is open. A b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ is called a bitopological (P) space if and only if (X, τ_{1}) and (X, τ_{2}) are both P-spaces. Let us abbreviate bitopological (P) space as b. t. (P) space.

Analogous to [9, Theorem 2.7] the following proposition can be proved.
PROPOSITION 2.13. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t. (P) space equipped with a weakly continuous partial order. If K is $\tau_{1}\left(\tau_{2}\right)$ Lindelöf, then $M(K)(L(K))$ is $\tau_{2}\left(\tau_{1}\right)$ closed.

Now let us define pairwise G Lindelöf bitopological spaces.
DEFINITION 2.14. A b.t. (P) space (X, τ_{1}, τ_{2}) equipped with a partial order whose graph is G is called pairwise G Lindelöf if and only if the space is pairwise Lindelöf and G is weakly continuous.
In the same way as we proved $2.5,2.6$ and 2.7 , the following results also can be proved.

PROPOSITION 2.15. Let X be a pairwise G Lindelöf b.t. (P) space. If Q is a dec. (inc.) subset of X and V is a $\tau_{2}\left(\tau_{1}\right)$ nbd of Q, then there exists a dec. τ_{2} open (inc. τ_{1} open) set U such that $Q \subset U \subset V$.

PROPOSITION 2.16. Let X be a pairwise G Lindelöf b.t. (P) space. If F_{1} and F_{2} are τ_{1} and τ_{2} closed subsets of X respectively such that $x \geq y$ for $x \in F_{2}$ and $y \in F_{1}$. Then there exists an inc. $\tau_{1} n b d U$ and a dec. $\tau_{2} n b d V$ such that $F_{2} \subset U$, $F_{1} \subset V$ and $U \cap V=\phi$.

PROPOSITION 2.17. A pairwise G Lindelöf b. t.(P) space is pairwise norm-
ally ordered.

3. Further characterizations.

DEFINITION 3.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s. equipped with a partial order whose graph is G. The space is called pairwise $G \alpha$ if and only if for each $x \in X, L(x)=\cap\left\{V_{i} \mid i \in N\right\}$ and $M(x)=\cap\left\{W_{i} \mid i \in N\right\}$ where each V_{i} is a dec. τ_{2} open set and each W_{i} is an inc. τ_{1} open set.

PROPOSITION 3.2. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a b.t. s. which is pairwise $G \alpha$, then $L(x)$ is τ_{1} closed and $M(x)$ is τ_{2} closed.

PROOF. Suppose $y \notin L(x)$. Then $y \leq x$ so that $M(y) \cap L(x)=\phi$. Hence $x \notin M(y)$. Thus there exists an inc. τ_{1} open set W such that $x \notin W$ and $W \supset M(y)$. In other words, $y \in W$ and $W \cap L(x)=\phi$ so that $L(x)$ is τ_{1} closed. Similarly one can prove that $M(x)$ is τ_{2} closed.

DEFINITION 3.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s. equipped with a partial order whose graph is G. The space is called pairwise $G \beta$ if and only if for each $x \in X$, $L(x)=\cap\left\{H_{1}^{l}\left(V_{i}\right) \mid i \in N\right\}$ and $M(x)=\cap\left\{H_{2}^{m}\left(W_{i}\right) \mid i \in N\right\}$ where each V_{i} is a dec. τ_{2} open set containing x and each W_{i} is inc. τ_{1} open set containing x.

It is to be noted that when $\tau_{1}=\tau_{2}$ and $G=\Delta$, the discrete order, the Definitions $\therefore .1$ and 3.3 reduce to the definitions of E_{0} and E_{1} spaces of Aull [1]. Also let us call a pair rise $G \beta$ space to be pairwise E_{1} whenever $G=\Delta$.

PROPOSITION 3.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b. t. s. equipped with a partial order whose graph is G. Consider the following statements.
(i) X is pairwise $G \alpha$.
(ii) X is pairwise $G \beta$.
(iii) G is weakly continuous.
(iv) $L(x)$ and $M(x)$ are τ_{1} and τ_{2} closed subsets of X respectively for each $x \in X$.
Then the following implications hold.
$\begin{array}{ll}\text { (ii) } \Rightarrow \text { (i) } \\ \text { 仡 } \\ \text { (iii) } & \Rightarrow \text { (iv). }\end{array}$
PROOF. That (i) \Rightarrow (iv) is precisely the Proposition 3.2 above.
That (iii) \Rightarrow (iv) is proved in [9, Proposition 2. 3].
(ii) \Rightarrow (i). Let $\left\{V_{i} \mid i \in N\right\}$ be a sequence of dec. τ_{2} open sets containing x such that $L(x)=\bigcap\left\{H_{1}^{l}\left(V_{i}\right) \mid i \in N\right\}$. If $y \in L(x)$, then $y \leqq x \in V_{i}$ for each i. Since V_{i} is decreasing, $y \in V_{i}$ for each i so that $L(x) \subset \cap\left\{V_{i} \mid i \in N\right\}$. Also if $y \in \cap\left\{V_{i} \mid i \in N\right\}$, then $y \in V_{i} \subset H_{1}^{l}\left(V_{i}\right)$ for each i so that $y \in \cap\left\{H_{1}^{l}\left(V_{i}\right) \mid i \in N\right\}=L(x)$. Therefore $L(x)=\cap\left\{V_{i} \mid i \in N\right\}$. Similarly $M(x)=\cap\left\{W_{i} \mid i \in N\right\}$ where each W_{i} is an inc. τ_{l} open set.
(ii) \Rightarrow (iii). If $x \not y$, then $y \notin L(x)$ so that there exists a dec. τ_{2} open set V such that $x \in V$ and $y \notin H_{1}^{l}(V)$. Let $U=X-H_{1}^{l}(V)$. Clearly V and U are dec. τ_{2} open set and inc. τ_{1} open set respectively such that $x \in V, y \in U$ and $U \cap V=\phi$. Hence by [9, Proposition 2.2] G is weakly continuous.

PROPOSITION 3.5. If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise G regular then, in Proposition 3.4, (i) \Leftrightarrow (ii) and (iii) \Leftrightarrow (iv).

PROOF. (i) \Rightarrow (ii). Let $\left\{V_{i} \mid i \in N\right\}$ be a countable collection of dec. τ_{2} open sets such that $L(x)=\cap\left\{V_{i} \mid i \in N\right\}$. Now $y \notin L(x)$
$\Rightarrow y \notin V_{n}$ for some $n \in N$ and $x \notin M(y)$.
$\Rightarrow V_{n} \cap M(y)=\phi$.
\Rightarrow (Since the space is pairwise G regular), there cxists disjoint sets W_{n} and U_{n} such that $x \in W_{n}, M(y) \subset U_{n}, W_{n}$ and U_{n} arc dec. τ_{2} open and inc. τ_{1} open respectively.
$\Rightarrow x \in P_{n} \subset X-U_{n}$ where $P_{n}=W_{n} \cap V_{n}$ and $y \nsubseteq X-U_{n}$ which is dec. τ_{1} closed. $\Rightarrow x \in L(x) \subset P_{n} \subset H_{1}^{\prime}\left(P_{n}\right) \subset X-U_{n}$ and $y \notin H_{1}^{l}\left(P_{n}\right)$ for some $n \in N$.
$\Rightarrow y \notin \cap\left\{H_{1}^{l}\left(P_{i}\right) \mid i \in N\right\}$.
Also, $L(x) \subset H_{1}^{l}\left(P_{i}\right)$ for each i, so that $L(x)=\bigcap\left\{H_{1}^{l}\left(P_{i}\right) \mid i \in N\right\}$. Similarly we can prove the existence of a countable collection $\left\{\mathcal{Q}_{,} \mid i \Xi N\right\}$ of inc. τ_{1} open subsets of X such that $M(x)=\cap\left\{H_{2}^{m}\left(Q_{i}\right) \mid i \in N\right\}$.
That (iv) \Rightarrow (iii) follows easily on using the fact that the space is pairwise G regular.

PROPOSITION 3.6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise $G \beta$ b. t. s. If K is $\tau_{2}\left(\tau_{1}\right)$ countably compact, then $L(K)(M(K))$ is $\tau_{1}\left(\tau_{2}\right)$ closed.

PROOF. Let $y \in X-L(K)$. Since the space is pairwise $G \beta$ there exists a count-
able collection $\left\{Q_{i} \mid i \in N\right\}$ of inc. τ_{1} open sets each containing y such that $M(y)$ $=\bigcap\left\{H_{2}^{m}\left(Q_{i}\right) \mid i \in N\right\}$. Since $M(y) \cap L(K)=\phi, K \subset L(K) \subset X-M(y) \subset \cup\left\{X-H_{2}^{m}\left(Q_{i}\right) \mid\right.$ $i \in N\}$. Hence there exists a finite number of integers $n_{1}, n_{2}, \cdots, n_{r}$ such that $K \subset \cup\left\{X-H_{2}^{m}\left(Q_{n}\right) \mid j=1,2,3, \cdots, r\right\}$; (notice that K is τ_{2} contably compact). Since each $X-H_{2}^{m}\left(Q_{n}\right)$ is dec., $K \subset L(K) \subset \cup\left\{X-H_{2}^{m}\left(Q_{n_{j}}\right) \mid j=1,2,3, \cdots, r\right\}=X-$ $\cap\left\{H_{2}^{m}\left(Q_{n_{j}}\right) \mid j=1,2,3, \cdots, r\right\}$ so that $L(K) \cap\left(\cap\left\{Q_{n_{j}} \mid j=1,2,3, \cdots, r\right\}\right) \subset L(K) \cap(\cap$ $\left.\left\{H_{2}^{m}\left(Q_{n}\right) \mid j=1,2,3, \cdots, r\right\}\right)=\phi$. Hence $L(K)$ is τ_{1} closed.
Let us define a Kim-type pairwise countable compactness.
DEFINITION 3.7. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s. Let $\tau(i, V)=\left\{\phi, X,\left\{U \cup V \mid U \in \tau_{i}\right\}\right\}$ where $V \in \tau_{j}(i, j=1,2 ; i \neq j)$. If $\tau(i, V)$ is countably compact for all $V \in \tau_{j}(i$, $j=1,2 ; i \neq j$), then the space is called pairwise countably compact.

The proof of the following Proposition is similar to [4, Theorem 2.9].
PROPOSITION 3.8. In a pairwise countably compact b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$, every τ_{i} closed subset is τ_{j} countably compact.

It can be easily seen that if a b.t.s. is both pairwise E_{1} and pairwise countably compact then the two topologies become equal. We state this result without proof.

PROPOSITION 3.9. If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise E_{1}, then $\tau_{1}=\tau_{2}$ if either the space is pairwise countably compact or both the topologies are individually countably compact.

THEOREM 3.10. A pairwise GB b. t. s. is pairwise G regular if the space is pairwise countably compact.
Proof. Let $x \in X$ and A be a dec. τ_{1} closed set with $x \notin A$. Since the space is pairwise $G \beta$, there exists a countable collection $\left\{W_{i} \mid i \in N\right\}$ of inc. τ_{1} open sets each containing x such that $M(x)=\cap\left\{H_{2}^{m}\left(W_{i}\right) \mid i \in N\right\}$. Since A is τ_{2} countably compact and $X-A \supset M(x)$, there exist positive integers $n_{1}, n_{2}, \cdots, n_{r}$ such that $A \subset \cup\left\{X-H_{2}^{m}\left(W_{n_{j}}\right) \mid j=1,2,3, \cdots, r\right\}=U$, say and $x \in \cap\left\{W_{n_{j}} \mid j=1,2,3, \cdots, r\right\}=V$, say. Then U and V are the required sets given in Definition 2.11. If we had started with an inc. τ_{2} closed set B and an element $x \notin B$, in a similar way we would have obtained the required sets U and V of the Definition 2.11. Hence the space is pairwise G regular.

4. Order and quasi-uniformity

In this section we discuss order induced by topological spaces. Pervin [8] and Csaszar [2] proved that every topological space is quasi-uniformizable. The notion of quasi-uniformity was also discussed by Nachbin [6] and he calls the same "semi-uniformity". We call a topological space weakly orderable if there exists an order such that the set of all inc. (or dec.) open nbds form a base for the topology. We also call a b. t. s. $\left(X, \tau_{1}, \tau_{2}\right)$ orderable if and only if the set of all dec. τ_{2} open sets form a base for τ_{2} and the set of all inc. τ_{1} open sets form a base for τ_{1}.
It will be recalled that a quasi-uniformity on a set X is a filter \mathscr{U} on $X \times X$ such that the diagonal Δ is contained in each member of \mathscr{U} and for each $U \in \mathscr{U}$, there is a $V \in \mathscr{U}$ such that $V \circ V \subset U$.

A subset C of a quasiordered set X is said to be convex if and only if $a, b \in C$ and $a \leqq x \leqq b \Rightarrow x \in C$. The intersection of an inc. and a dec. set is convex. If X is a topological space equipped with a quasiorder, X is said to be locally convex [6, p.26] if and only if the collection of convex nbds of every point of X is a base for the nbd system of this point.

THEOREM 4.1. Every topological space is weakly orderable. Every pairwise completely regular b.t. s. is orderable.

PROOF. The proof of the first part of the theorem is actually bascd on what is given in [6, p.58]. Let us, for the benefit of the reader, outline the proof. Let (X, τ) be an arbitrary topological space. Then there exists a quasi-uniformity, say, in particular, Pervin's quasi-uniformity, \mathscr{U} which is compatible with τ. Let $G=\cap\{U \mid U \in \mathscr{U}\}$. Then G is the graph of a quasi-order on X. Let $x \in X$ and A be a τ nbd of x. Then there exists $U \in \mathscr{U}$ such that $U(x)=A$. Then by the definition of quasi-uniformity there exists a $W \in \mathscr{U}$ such that $W \circ W \subset U$. Let us write $B=X-H^{l}(X-W(x))$ where $H^{l}(S)$ stands for the smallest dec. τ closed set that contains S. Then it is easily seen that $B \subset U(x)$. That B is nonempty is also clear. Hence the result.
The proof of the second part is as follows. Let (X, τ_{1}, τ_{2}) be pairwiss completely regular. Then there exists a quasi-uniformity \mathscr{U} such that \mathscr{U} is compatible with τ_{1} and its conjugate \mathscr{U}^{-1} is compatible with τ_{2}. Let the graph G of the quasiorder be given by $G=\cap\{U \mid U \in \mathscr{U}\}$. With respect to G, by virtue of (a), the
space X is orderable.
THEOREM 4.2. If (X, τ) is a topological space such that τ is self conjugate in the sense that there exists a quasi-uniformity \mathscr{U} with the property \mathscr{U} and \mathscr{U}^{-1} are both compatible with τ, then X admits an order relation with respect to which the space is locally convex.

THEOREM 4.3. The quasiorder relation induced by τ as given in Theorem 4.1 above, is a partial order if and only if the space is T_{0}.

PROOF. Let $G=\cap\{U \mid U \in \mathscr{C}\}$. Since G is a partial order, $G \cap G^{-1}=\Delta$, the diagonal. Hence if $(x, y) \in G$ then $(x, y) \notin G^{-1}$ so that $y \in U(x)$ for some $U \in \mathscr{U}$ and there exists at least one $V \in \mathscr{U}$ such that $x \notin V(y)$.

We now present three results without proof before concluding this section.
PROPOSITION 4.4. The quasiorder induced by τ as given in Theorem 4.1 is discrete if and only if the space is T_{1}.
PROPOSITION 4.5. The quasiorder induced by τ as given in Theorem 4.1 is an equivalence relation if and only if the space is R_{0}; and further the equivalence class of x is $c l(\{x\})$.

PROPOSITION 4.6. The quasiorder induced by τ as given in Theorem 4.1 is an equivalence relation whose graph is closed in the product space $X \times X$ if and only if the space is R_{1}.

5. Pairwise G perfectly normal spaces.

In this section we introduce the notion of pairwise G perfectly normal spaces and study their properties.
DEFINITION 5.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be ab.t.s. equipped with a quasiorder relation whose graph is G. A set $A(\subset X)$ is called $\tau_{i} G_{\delta}^{l}$ if and only if A is the countable intersection of dec. τ_{i} open sets. A subset A is called $\tau_{i} G_{\delta}^{m}$ if and only if A is the countable intersection of inc. τ_{i} open sets.

DEFINITION 5.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s. equipped with a quasiorder relation whose graph is G. The space is pairwise G perfectly normal if and only if it is pairwise normally ordered and every dec. τ_{1} closed set is $\tau_{2} G_{\delta}^{l}$ and every inc. τ_{2}
closed set is $\tau_{1} G_{\delta}^{m}$.
DEFINITION 5.3. A b. t. s. (X, τ_{1}, τ_{2}) equipped with a quasiorder relation whose graph is G is called order second countable if and only if τ_{1} has a countable base consisting of inc. τ_{1} open sets and τ_{2} has a countable base consisting of dec. τ_{2} open sets.

The notions of pairwise complete normality and pairwise perfect normality of a b. t. s. not necessarily equipped with a quasiorder were discussed in [5], [7] and [12].

THEOREM 5.4. If a b.t.s. $\left(X, \tau_{1}, \tau_{2}\right)$ equipped with a qusiorder relation (whose graph is G) is pairwise G regular and order second countable, then the space is pairwise G perfectly normal.

Proof. Let A be a dec. τ_{1} closed set. Let us take $A \neq X$. (If $A=X$, it is trivially $\tau_{2} G_{\delta}^{l}$). Suppose $x \notin A$. Then there exists a inc. τ_{1} open set U_{x} such that $x \in U_{x} \subset H_{2}^{m}\left(U_{x}\right) \subset X-A$. Let $\alpha=\left\{V_{n} \mid n \in N\right\}$ be a countable base for τ_{1} where each V_{n} is inc. τ_{1} open. Then clearly $x \in V_{n(x)} \subset X-A$ for some positive integer $n(x) \in N$ and $V_{n(x)} \in \alpha$. Therefore $H_{2}^{m}\left(V_{n(x)}\right) \subset X-A$. Hence $H_{2}^{m}\left(V_{n(x)}\right) \cap A=\phi$ so that $A=\cap\left\{X-H_{2}^{m}\left(V_{n(x)}\right) \mid x \in A\right\}$. Thus A is $\tau_{2} G_{\delta}^{l}$. Similarly one can prove that every inc. τ_{2} closed subset of X is $\tau_{2} G_{\delta}^{m}$. Since the space is order second countable, both the topologies are second countable and hence the space is pairwise Lindelöf. Since the space is given to be pairwise G regular, by virtue of Theorem 2.12, the space is pairwise normally ordered and hence the space is pairwise G perfectly normal.

An immediate consequence of the above theorem will be the following.
THEOREM 5.5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise completely regular space. Let τ_{1} and τ_{2} be second countable. Let \mathscr{U} be the quasi-uniformity compatible with τ_{1} such that \mathscr{U}^{-1} be the one compatible with τ_{2}. Let G be the order generated by \mathscr{U}. Then the space is pairwise G perfectly normal.

THEOREM 5.6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a b.t.s. equipped with a quasiorder relation whose graph is G. Then X is pairwise G perfectly normal if and only if for each non empty dec. τ_{1} closed set A and a point $b \notin A$, there exists a real-valued
monotone function f on X such that $f^{-1}(0)=A, f(b)=1, f$ is τ_{2} u. s. c. and τ_{1}, l. s. c and $f(X) \subset[0,1]$ and for each nonempty inc. τ_{2} closed set B and a point $a \notin B$, there is a real-valued antitone function g on X such that $g^{-1}(0)=B$, $g(0)=1, g$ is τ_{1} u.s. c. and $\tau_{2} l$. s. c. and $g(X) \subset[0,1]$.
PROOF. Sufficiency. Let X satisfy the conditions mentioned in the theorem. Let A and B be dec. τ_{1} closed and inc. τ_{2} closed sets which are disjoint. Let $a_{0} \in A$ and $b_{0} \in B$. Then there exists a function $f: X \longrightarrow[0,1]$ such that
(i) f is τ_{2} u. s. c. and τ_{1} l. s. c.
(ii) f is monotone.
(iii) $f^{-1}(0)=A$ and $f\left(b_{0}\right)=1$.

Also, there exits a function $g: X \longrightarrow[0,1]$ such that
(i) g is τ_{1} u. s. c. and τ_{2} l. s. c.
(ii) g is antitone.
(iii) $g^{-1}(0)=B$ and $g\left(a_{0}\right)=1$.

Now, if we write $h=f-g$, then clearly h is monotone τ_{2} u. s. c. and τ_{1} l. s. c. Further $h(a)<0$ for all $a \in A$ and $h(b)>0$ for all $b \in B$. If $h^{-1}(-\infty, 0)=U$ and $h^{-1}(0, \infty)=V$, then U and V are dec. τ_{2} open and inc. τ_{1} open sets which are disjoint. Further $U \supset A$ and $V \supset B$. Hence the space is pairwise normally ordered.

Let A be any dec. τ_{1} closed set. Suppose $b \notin A$. Then there exists a function $f: X \longrightarrow[0,1]$ such that
(i) f is τ_{2} u. s. c. and τ_{1} l. s. c.
(ii) f is monotnne.
(iii) $f^{-1}(0)=A$ and $f(b)=1$.

Also $A=\cap\left\{\left.f^{-1}\left(-\infty, \frac{1}{n}\right) \right\rvert\, n \in N\right\}$. As f is monotone $f^{-1}\left(-\infty, \frac{1}{n}\right)$ is dec. for each $n \in N$. Since f is τ_{2} u. s. c. $f^{-1}\left(-\infty, \frac{1}{n}\right)$ is τ_{2} open. Thus A is $\tau_{2} G_{\dot{\delta}}^{l}$. Similarly we can prove that every inc. τ_{2} closed set is a $\tau_{1} G_{\delta}^{m}$. Hence the space is pairwise G perfectly normal.
Necessity. Assume the space to be pairwise G perfectly normal. Let A be a nonempty dec. τ_{1} closed subset of X. Let $x_{0} \notin A$ and $A=\cap\left\{V_{n} \mid n \in N\right\}$ where each V_{n} is a dec. τ_{2} open set. Thus there exists an integer n_{0} such that $x_{0} \notin V_{n_{0}}$. Let $G_{1}=\cap\left\{V_{n} \mid 1 \leqq n \leqq n_{0}\right\} . G_{1}$ is a dec. τ_{2} open set and $A \subset G_{1}$. Since the space is pairwise normally ordered there exists'a dec. τ_{2} open set U_{1} such that $A \subset U_{1} \subset$
$H_{1}^{l}\left(U_{1}\right) \subset G$. Let us define $G_{2}=V_{n_{0}+1} \cap U_{1}$. Then G_{2} is a dec. τ_{2} open set, such that $A \subset G_{2} \subset H_{1}^{l}\left(G_{2}\right) \subset G_{1}$. We can now assume that we have defined G_{1} to G_{k} such that G_{m} is a dec. τ_{2} open set containing A and $H_{1}^{l}\left(G_{m}\right) \subset G_{m-1}$ and $G_{m} \subset$ $V_{n_{0}+m-1}$ for each $m=2,3, \cdots, k$. Then let $G_{k+1}=V_{n_{0}+k} \cap U_{k}$ where U_{k} is a dec. τ_{2} open set such that $A \subset U_{k} \subset H_{1}^{l}\left(U_{k}\right) \subset G_{k}$. Thus we construct inductively a sequence G_{n} of dec. τ_{2} open sets such that
(i) $A=\cap\left\{G_{n} \mid n \in N\right\}$
(ii) $H_{1}^{l}\left(G_{n+1}\right) \subset G_{n} \subset X-M\left(x_{0}\right)$
for each $n \in N$. In the same way as we constructed in the proof of [9, Theorem 3.3], it is possible now to construct a function $f: X \longrightarrow[0,1]$ such that
(i) f is τ_{2} u. s. c. and τ_{1} l. s. c.
(ii) f is monotone
(iii) $f^{-1}(0)=A$ and $f\left(x_{0}\right)=1$.

Similarly the other parts of the necessary conditions follow.

> University of Auckland, Auckland, NEW ZEALAND.

REFERENCES

[1] C. E. Aull, A certain class of topological spaces, Prace Math., 11(1967), 49-53.
[2] A.Csaszar, Fundamenta la topologie generale, Gauther-Villars, Paris(1960).
[3] J.C.Kelly, Bitopological spaces, Proc. Lond, Math. Soc., 13(1963), 71-89.
[4] Y. W. Kim, Pairwise compactness, Publicatione Mathematicae, 15(1968), 87-90.
[5] Y. W. Kim, Pseudo-quasi-metric spaces, Proc. Japan Acad., 44(1968), 1009-1012.
[6] L. Nachbin, Topology and order, Van Nostrand Co., Inc., Princeton, (1965).
[7] C. W. Patty, Bitopological spaces, Duke Math. J., 34(1967), 387-392.
[8] W. J. Pervin, Quasi-unniformization of topological spaces, Math. Ann., 150(1963), 316-317.
[9] T. G. Raghavan, Quasiordered bitopological spaces, The Mathematics Student, 4 (1973), 276-284.
[10] T. G. Raghavan, Analogue of Katelov's theorem, The Mathematics Student, 43

T. G. Raghavan

(1975), 65-66.
[11] T. G. Raghavan and I. L. Reilly, On non-symmetric topological structures, (preprint).
[12] I. L. Reilly, Quasi-gauges, quasi-uniformities and bitopological spaces, Doctoral dissertation, University of Illinois, Urbana (1970).

