Kyungpook Math. J.
Volume 20, Number 1
June, 1980

A FIXED POINT THEOREM IN METRICALLY CONVEX METRIC SPACES

By J. Achari ${ }^{+}$and J. J. Rivera ${ }^{++}$

0. Introduction

In a recent paper Maiti et al [4] proved the following theorm.
THEOREM A. Let (x, ρ) be a complete metric space. Given an $\varepsilon>0$ there exists $\boldsymbol{a} d>0$ such that the mapping $f: X \rightarrow X$ satisfies the condition
(1) $\quad \varepsilon \leq \max \{\rho(x, y), o(x, f x), \rho(y, f y)\}<\varepsilon+\delta \Longrightarrow o(f x, f y)<\varepsilon$ for $x, y \cong X$. Also let the functional $F(x)=\rho(x, f x)$ is lower semi-continuous. Then f has a unique fixed point.

It is worthwhile to remark that theorem A is more general than weakly uniformly strict contraction of Meir and Keeler [3] (which is valid only for continuous mapping). We give an example to illustrate this fact.

EXAMPLE. Let $X=[0,7]$ and the function f is defined by

$$
f(x)=\left\{\begin{array}{lll}
\frac{2}{5} x, & \text { if } & 0 \leq x \leq 6 \\
-2 x+14 & \text { if } & 6<x \leq 7
\end{array}\right.
$$

In this case the theorem of Meir and Keeler [3] is not satisfied since f is discontinuous at $x=6$, but theorem A is satisfied.

The chief aim of the present note is to prove a new fixed point theorem for mappings satisfying (1) in metrically convex metrix spaces. This result further generalizes the result of Assad [1].

1. Fixed point theorem

THEOREM 1. Let (X, o) be a complete, metricaily convex metric space and M a non-empty closed subset of X. Let $f: M \rightarrow M$ satisfies (1) and fx $\in M$ for every $x \in \delta M(\delta M$ denotes the boundary of $M)$. Also let (ii) if $x \in \delta M, y \in M, z \in M$, $f z \notin M$ then $\rho(x, y)<\rho(f z, y)$. Further if the functional $F(x)=\rho(x, f x)$ is lower semi-continuous, then f has a unique fixed point.

[^0]PROOF. We construct a sequence $\left\{x_{n}\right\}$ in M as follows: let x_{0} be an arbitrary point in M. Let $x^{\prime}{ }_{1}=f\left(x_{0}\right)$. If $x_{1}{ }^{\prime} \in M$, then set $x_{1}=x_{1}{ }^{\prime}$, otherwise we choose $x_{1} \in \delta M$ so that $\rho\left(x_{0}, x_{1}\right)+\rho\left(x_{1}, x_{1}{ }^{\prime}\right)=\rho\left(x_{0}, x^{\prime}{ }_{1}\right)$ (cf. [2]). Suppose that $\left\{x_{i}\right\}$, $\left\{x_{i}^{\prime}\right\}, i=1,2, \cdots, N$ have been so chosen that
(a)

$$
x_{i}^{\prime}=f\left(x_{i-1}\right), i=1,2, \cdots, N
$$

(b) either $x_{i}=x_{i}^{\prime} \in M$ or $x_{i} \in \delta M$ and satisfies the relation

$$
\rho\left(x_{i-1}, x_{i}\right)+\rho\left(x_{i}, x_{i}^{\prime}\right)=\rho\left(x_{i-1}, x_{i}^{\prime}\right) .
$$

Now let $x_{N+1}^{\prime}=f\left(x_{N}\right)$. If $x_{N+1} \in M$ we put $x_{N+1}=x_{N+1}^{\prime}$, otherwise we choose $x_{N+1} \in \delta M$ so that

$$
\rho\left(x_{N}, x_{N+1}^{\prime}\right)=\rho\left(x_{N}, x_{N+1}\right)+\rho\left(x_{N+1}, x_{N+1}^{\prime}\right) .
$$

and hence by induction we are finished.
If there exists $x_{j} \in\left\{x_{n}\right\}$ such that all of its iterates lie in M, Maiti et al [4] showed that this sequence of iterates converges to a fixed point of f. Therefore we may assume that there exists infinitely many points $x_{i} \in\left\{\in_{n}\right\}$ for which $x_{i}=$ $x_{i^{\prime}}^{\prime}$ Let $\left\{x_{n_{k}}\right\}$ be the subsequence of all such points in $\left\{x_{n}\right\}$, i. e. $x_{n_{s}} \neq x_{n_{s}}^{\prime}$ We assume that

$$
\begin{equation*}
\rho\left(x_{n}, x_{n+1}\right) \rightarrow 0 \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho\left(f x_{n}, x_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

To establish (2) and (3) we first show that

$$
\begin{equation*}
\rho\left(x_{n_{k}-1}, \hat{x}_{n_{k}^{\prime}}\right) \rightarrow 0 \text { as } k \rightarrow \infty \tag{4}
\end{equation*}
$$

To prove (4) we use the fact that the inequality (1) implies

$$
\rho(f x, f y)<\max \{\rho(x, y), \rho(x, f x), \rho(y, f y)\}
$$

If we put $n_{k}=p, n_{k}+1=q$ then it follows from (4) that

$$
\begin{align*}
\rho\left(x_{q-1}, x_{q}^{\prime}\right) & =\rho\left(f\left(x_{q-2}\right), f\left(x_{q-1}\right)\right) \tag{5}\\
& <\max \left\{\rho\left(x_{q-2}, x_{q-1}\right), \rho\left(x_{q-2}, x_{q-1}\right), \rho\left(x_{q-1}, x_{q}^{\prime}\right)\right\} \\
& <\rho\left(x_{q-2}, x_{q-1}\right)<\cdots \cdots<\rho\left(x_{p}, x_{p+1}\right) .
\end{align*}
$$

Now by condition (ii) we have if $x_{p} \neq x^{\prime}{ }_{p}$, then $\rho\left(x_{p}, x_{p+1}\right)<\rho\left(x^{\prime}{ }_{p}, x_{p+1}\right)$. Also we have for $x_{p} \neq x_{p}^{\prime}, \quad \rho\left(x_{p}, x_{p+1}\right)<\rho\left(x_{p-1}, x_{p}^{\prime}\right)$. Because we have

$$
\begin{align*}
\rho\left(x_{p}, x_{p+1}\right)<\rho\left(x_{p}^{\prime}, x_{p+1}\right) & =\rho\left(f\left(x_{p-1}\right), f\left(x_{p}\right)\right) \tag{6}\\
& <\max \left\{\rho\left(x_{p-1}, x_{p}\right), \rho\left(x_{p-1}, x_{p}^{\prime}\right), \rho\left(x_{p}, x_{p+1}\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
& <\rho\left(x_{p-1}, x_{p}\right)+\rho\left(x_{p}, x_{p}^{\prime}\right) \\
& =\rho\left(x_{p-1}, x_{p}^{\prime}\right)
\end{aligned}
$$

Putting the value of (6) in (5) we get

$$
\rho\left(x_{q-1}, x_{q}\right)<\rho\left(x_{p-1}, x_{p}^{\prime}\right) .
$$

Hence the sequence $\left\{\rho\left(x_{n_{k}-1}, x^{\prime}{ }_{n_{k}}\right)\right\}$ is decreasing. Suppose that $\rho\left(x_{n_{k}-1}, x_{n_{k}}\right) \rightarrow$ $\varepsilon>0$ Then for all $k=1,2, \cdots \cdots$

$$
\rho\left(x_{n_{k}-1}, x_{n_{k}}\right)=\max \left\{\rho\left(x_{n_{k}-1}, x_{n_{k}}\right), \rho\left(x_{n_{k}-1}, f\left(x_{n_{k}-1}\right)\right), \rho\left(x_{n_{k}}^{\prime}, f\left(x_{n_{k}}^{\prime}\right)\right)\right\}>\varepsilon .
$$

But the condition (1) implies that

$$
\varepsilon \leq \max \{\rho(x, y), \rho(x, f x), \rho(y, f y)\}<\varepsilon+\delta \Longrightarrow \rho(f(x), f(y))<\varepsilon
$$

We know that there exists an integer N such that for $k \geq N$

$$
\rho\left(x_{n_{k}-1}, x_{n_{k}}^{\prime}\right)=\max \left\{\rho\left(x_{n_{k}-1}, x_{n_{k}}^{\prime}\right), \rho\left(x_{n_{k}-1}, f\left(x_{n_{k}-1}\right)\right), \rho\left(x_{n_{k}}^{\prime} f\left(x_{n_{k}}^{\prime}\right)\right)\right\}<\varepsilon+\delta .
$$

:So if we let $n_{k}=p, n_{k}+1=q$ it follows from (6) that

$$
\rho\left(x_{p}, x_{p+1}\right)<\rho\left(x_{p-1}, x_{p}^{\prime}\right)<\varepsilon+\delta .
$$

Also on the other hand

$$
\varepsilon<\rho\left(x_{q-1}, x_{q}^{\prime}\right)<\rho\left(x_{p}, x_{p+1}\right) .
$$

Therefore

$$
\varepsilon<\rho\left(x_{p}, x_{p+1}\right)<\varepsilon+\delta .
$$

It follows that

$$
\rho\left(x_{q-1}, x_{q}^{\prime}\right)<\cdots \cdots<\rho\left(x_{p+1}, x_{p+2}^{\prime}\right)=\rho\left(f\left(x_{p}\right), f\left(x_{p+1}\right)\right)<\varepsilon
$$

and this contradicts the assumption that for all $k=1,2, \cdots \cdots, \rho\left(x_{n_{k}-1}, x_{n_{k}}\right)>\varepsilon$. Hence we have proved (4). Now we shall show that (2) follows from (4).

Let (2) is not true, then there exists an $\varepsilon>0$ such that for every positive integer N, there exists $n \geq N$ such that $\rho\left(x_{n}, x_{n+1}\right)>\varepsilon$, but by (4) we know that there exists a positive integer M such that for $k \geq M, \rho\left(x_{n_{k}-1}, x^{\prime}{ }_{n_{k}}\right)<\varepsilon$. So let $N=n_{k}$ (for some $k \geq M$). Clearly for all $n \geq N$

$$
\rho\left(x_{n}, x_{n+1}\right)<\cdots \cdots<\rho\left(x_{N-1} x_{N}^{\prime}\right)<\varepsilon
$$

and this is a contradiction. Hence (2) follows. A similar argument establishes (3).

We shall now show that the sequence $\left\{x_{n}\right\}$ is Cauchy. Contruct a sequence $\left\{x_{n}\right\}$ such that $x_{n}=f^{n} x, x \in M$. Also we note that condition (1) implies that

$$
\begin{equation*}
\rho(f x, f y)<\max \{\rho(x, y), \rho(x, f x), \rho(y, f y)\}, x \neq y, x, y \in M \tag{7}
\end{equation*}
$$

Then from (7) we derive that $\rho\left(x_{n+1}, x_{n+2}\right)<\rho\left(x_{n}, x_{n+1}\right)$. Hence $\rho\left(x_{n}, x_{n+1}\right)$
decreases with n and, because of (1), $\rho\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. Next we shall: show that the sequence $\left\{x_{n}\right\}$ is fundamental. If it is not, there exists an $\varepsilon>0$, such that lim sup $\rho\left(x_{m}, x_{n}\right)>2 \varepsilon$. Since $\rho\left(x_{n}, x_{n+1}\right) \rightarrow 0$, there exists a positive integer N such that $\rho\left(x_{j}, x_{j+1}\right)<\delta^{\prime} / 3$ for $j \geq N$, where $\delta^{\prime}=\min (\hat{\delta}, \varepsilon)$. Choose further two integers $m, n>N$ so that $\rho\left(x_{m}, x_{n}\right)>2 \varepsilon>\varepsilon+\delta^{\prime}$. This implies that, there exists an integer k in [m, n] with

$$
\begin{equation*}
\varepsilon+\frac{2 \delta^{\prime}}{3}<\rho\left(x_{m}, x_{k}\right)<\varepsilon+\delta^{\prime} . \tag{8}
\end{equation*}
$$

Now from the triangle inequality we obtain

$$
\begin{align*}
& \rho\left(x_{m}, x_{k}\right) \leq \rho\left(x_{m}, x_{m+1}\right)+\rho\left(x_{m+1}, x_{k+1}\right)+\rho\left(x_{k+1}, x_{k}\right) \tag{9}\\
& \left\langle\delta^{\prime} / 3+\varepsilon+\delta^{\prime} / 3=\varepsilon+\frac{20^{\prime}}{3}\right.
\end{align*}
$$

since $\max \left\{\rho\left(x_{m}, x_{k}\right), o\left(x_{m}, x_{m+1}\right), \rho\left(x_{k}, x_{k+1}\right)\right\}=\rho\left(x_{m}, x_{k}\right)$. Then (9) contradicts: (8) and hence $\left\{x_{n}\right\}$ is fundamental sequence. Let $u=\lim _{z} x_{n}$. Since $F(x)$ is lower semi-continuous, lim inf $F\left(x_{n}\right) \geq F(u)$. But $\rho\left(x_{n}, x_{n \rightarrow 1}{ }^{i} \rightarrow 0\right.$ as $n \rightarrow \infty$; thus $F(u)=0$, implying $f(u)=u$. Then u is a fixed point of f and because of (7), it is clearly unique.

NOTE The above result is patterned after the result of Assad[1] with necessary modifications as required for the more general settings.

ACKNOWLEDGEMENT One of the authors (J.A) sincerely acknowledges thesupport of a fellowship from the C.N.R (Italy).

Istituto Matematico,
Ulisse Dini,
Viale Morgagni 67/A,
50134 Firenze, Italy

REFERENCES

[1] N. A. Assad, A fixed point theorem for weakly uniformily strict contraction, Canad... Math. Buil., 16, 15-18 (1973).
[2] N. A. Assad and W. A. Kirk, Fixed point theorents for set valued mappings of contractive: type, Pacific J.Math., 43, 553-562 (1972).
[3] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., $28_{\text {s... }}$ 326-329 (1969).
[4] M. Maiti, J. Achari and T.K. Pal, Remarks on some fixed point theorens,, Publ. Instor Math., 21; 115-118 (1977).

[^0]: ${ }^{+}$Munshifdanga, P.O.; Raghunathpur(Pin: 723133), Dist. Purulia(W.B.), India.
 ${ }^{++ \text {Dept. of Math. (Faculty of Engineering), Univ. of El Salvador, San Salvador Centrab }}$ America.

