GENERIC SUBMANIFOLDS WITH SEMIDEFINITE SECOND FUNDAMENTAL FORM OF A COMPLEX PROJECTIVE SPACE

By Kentaro Yano and Masahiro Kon

0. Introduction

Let CP^{n+p} denote the complex projective space of real dimension n+p ((complex dimension (n+p)/2) with constant holomorphic sectional curvature 4. We denote by J the almost complex structure tensor field of CP^{n+p} . Let M be a real n-dimensional Riemannian manifold isometrically immersed in CP^{n+p} .

We denote by g the Riemannian metric tensor field induced on M from that of $\mathbb{C}P^{n+p}$.

When the transform of the normal space $T_x(M)^{\perp}$ at x of M by J is always tangent to M, that is, $JT_x(M)^{\perp} \subset T_x(M)$ for any $x, T_x(M)$ being the taugent space at x of M, the submanifold M is said to be generic in $\mathbb{C}P^{n+p}$. If M is a real hypersurface of $\mathbb{C}P^{n+1}$, then M is obviously a generic submanifold.

In [1], Okumura proved the following theorems:

THEOREM A. Let M be a compact orientable real hypersurface of $\mathbb{C}P^{n+1}$ with constant mean curvature such that the second fundamental form A is semidefinite. If $\operatorname{Tr} A^2 \leq n-1$, then $\operatorname{Tr} A^2 = n-1$ and $M = M_{p,o}^C$, p = (n-1)/2.

THEOREM B. Let M be a compact orientable real hypersurface of $\mathbb{C}P^{n+1}$ with constant mean curvature such that the second fundamental form A is semidefinite. If $(\operatorname{Tr}A)^2 \leq (n-1)^2$, then $M = M_{p,o}^C$, p = (n-1)/2.

The purpose of the present paper is to prove generalizations of theorems A and B for generic submanifolds of CP^{n+p} with flat normal connection.

1. Preliminaries

Let M be an n-dimensional generic submanifold of $\mathbb{C}P^{n+p}$. For any vector field X tangent to M, we put JX = PX + FX, where PX is the tangential part of JX and FX the normal part of JX. Then P is an endomorphism on the

tangent bundle T(M). The operator of covariant differentiation with respect to the Levi-Civita connection in CP^{n+p} (resp. M) will be denoted by $\overline{\nabla}$ (resp. ∇). The Weingarten formula is given by $\nabla_x V = -A_V X + D_X V$ for any vector field X tangent to M and any vector field V normal to M, where D denotes the operator of covariant differentiation with respect to the linear connection. induced in the normal bundle $T(M)^{\perp}$ of M.A is called the second fundamental form of M. For any normal vector V, A_V is a symmetric linear transformation. on $T_x(M)$. Let $\{v_a\}$ be an orthonormal frame for $T_x(M)^{\perp}$. Then the mean curvature vector μ of M is defined to be $\mu = \sum \operatorname{Tr} A_a v_a$, where $A_a = A_{v_a}$. If $D\mu = 0$, then μ is said to be *parallel*. For any vector X tangent to M and any vector V normal to M, if $g(A_vX, X) \leq 0$ or $g(A_vX, X) \geq 0$, then the second fundamental form A of M is said to be semidefinite. We now define the curvature tensor R^{\perp} of the normal bundle of M by $R^{\perp}(X,Y) = [D_X, D_Y] - D_{\{X,Y\}}$. If R^{\perp} vanishes identically, then the normal connection of M is said to be flat. If the normal connection of M is flat, we can choose an orthonormal frame $\{v_a\}$ of the normal bundle such that $Dv_a=0$ for all a. Now we have

LEMMA 1. ([2]). Let M be an n-dimensional generic submanifold of $\mathbb{C}P^{n+p}$ with flat normal connection. Then

LEMMA 2. ([2]). Let M be an n-dimensional generic submanifold of CP^{n+p} with flat normal connection. If the mean curvature vector of M is parallel, then

$$g(\nabla^{2}A, A) = (n-3)\sum_{a} \operatorname{Tr} A_{a}^{2} - \sum_{a} (\operatorname{Tr} A_{a})^{2} + 3\sum_{a} |[P, A_{a}]|^{2} + 2p(p-1)$$

$$+ \sum_{a,b} [3g(A_{a}Jv_{b}, Jv_{b})\operatorname{Tr} A_{a} - (\operatorname{Tr} A_{a}A_{b})^{2} + (\operatorname{Tr} A_{a})(\operatorname{Tr} A_{b}^{2}A_{a})].$$

Model space: Let S^{n+2} be sphere with radius 1. In S^{n+2} we have the family of generalized Clifford surfaces $M_{p,q} = S^p(r) \times S^q(r)$, $r_1^2 + r_2^2 = 1$, p+q=n+1. By choosing the spheres in such a way that they lie in complex subspaces we get fibrations $S^1 \longrightarrow M_{2p+1,2q+1} \stackrel{\pi}{\longrightarrow} M_{p,q}^C$ compatible with Hopf fibration, where p+q=(n-1)/2. Thus we see that $M_{p,q}^C = \pi(S^{2p+1}(r_1) \times S^{2q+1}(r_2))$, $r_1^2 + r_2^2 = 1$. In the special case q=0, $M_{p,q}^C$ is called the geodesic hypersphere.

2. Theorems

First of all, we prove

THEOREM 1. Let M be a compact orientable n-dimensional generic submanifold of CP^{n+p} with flat normal connection such that the second fundamental form is semidefinite. If $\sum_{a} \operatorname{Tr} A_a^2 \leq (n-1)p$, then p=1 and M is the geodesic hypersphere $\pi(S^n(r) \times S^1(r)), r = (1/2)^{1/2}$, of CP^{n+1} .

PROOF. Since M is compact orientable, lemma 1 implies that

$$\int_{M} [(n-1)p - \sum_{a} \operatorname{Tr} A_{a}^{2} + \sum_{a,b} \operatorname{Tr} A_{a}g(A_{a}Jv_{b},Jv_{b})] *1 = -\frac{1}{2} \int_{M} \sum_{a} |[P,A_{a}]|^{2} *1.$$

From the assumptions we see that the left hand side of this equation is nonnegative. Thus we obtain $\sum_{a} \operatorname{Tr} A_a^2 = (n-1)p$, $PA_a = A_a P$ and $\operatorname{Tr} A_a g(A_a J v_b)$, $Jv_b = 0$ for any a and b. Suppose that $\operatorname{Tr} A_a = 0$ for some a. Since the second fundamental form is semidefinite, we see that $A_a = 0$. On the other hand, the equation of Codazzi is given by

$$(\nabla_X A)_V Y - (\nabla_Y A)_V X = -g(X, JV)PY + g(JV, Y)PX - 2g(X, PY)JV.$$

Putting $V=v_a$ and X=JV in this equation, we obtain g(JV,JV)PY=0. Thus we have P=0. Then M is anti-invariant and $\sum_b g(A_aJv_b,Jv_b)={\rm Tr}A_a$ for any a. Therefore ${\rm Tr}A_ag(A_aJv_b,Jv_b)=0$ implies that ${\rm Tr}A_a=0$ for all a and hence M is totally geodesic. This contradicts to the fact that $\sum_a {\rm Tr}A_a^2=(n-1)p$. Consequently, we must have ${\rm Tr}A_a\neq 0$ for all a and then $g(A_aJv_b,Jv_b)=0$ for any a and b. Let V be a unit vector normal to M. We take an orthonormal frame $\{V_a\}$ of $T_r(M)^{\perp}$ such that $V=V_1$. Then we obtain

$$\begin{split} \sum_{d} g(A_{a}JV_{d},JV_{d}) &= \sum_{b,c,d} g(V_{d},v_{b})g(V_{d},v_{c})g(A_{a}Jv_{b},Jv_{c}) \\ &= \sum_{b} g(A_{a}Jv_{b},Jv_{b}) = 0. \end{split}$$

From this we see that $g(A_aJV,JV)=0$ for any unit vector V normal to M. Since A_a is symmetric, we obtain $g(A_aJv_b,Jv_c)=0$ for any a,b and c by putting $V=(v_a+v_c)/\sqrt{2}$. We now use the following equation of Ricci

$$g(R^{\perp}(X,Y)U,V)+g([A_{V},A_{U}]X,Y)=g(FY,U)g(FX,V)-g(FX,U)g(FY,V).$$

Putting $V = v_a$, $U = v_b$, $X = Jv_a$ and $Y = Jv_b$ in this equation, and using $R^{\perp} = 0$, we have $g(v_b, v_b)g(v_a, v_a) - g(v_a, v_b)^2 = 0$. Therefore we obtain p = 1. On the other hand, $PA_a = A_aP$ implies that the mean curvature of M is constant because of p = 1 (see [1]). Thus our theorem follows from theorem A.

From theorem 1 we have

THEOREM 2. Let M be a compact orientable real hypersurface of CP^{n+1} such that the second fundamental form is semidefinite. If $\operatorname{Tr} A^2 \leq n-1$, then M is the geodesic hypersphere $\pi(S^n(r) \times S^1(r)), r = (1/2)^{1/2}$.

THEOREM 3. Let M be a compact orientable n-dimensional generic submanifold of \mathbb{CP}^{n+p} with flat normal connection such that the second fundamental form is semidefinite. If the mean curvature vector of M is parallel and $\sum_{a} (\operatorname{Tr} A_a)^2 \leq (n-1)^2 p$, then p=1 and M is the geodesic hypersphere $\pi(S^n(r) \times S^1(r))$, $r=(1/2)^{1/2}$, of \mathbb{CP}^{n+1} .

PROOF. Since M is compact orientable, lemma 2 implies that

$$\int_{M} [|\nabla A|^{2} - 2(n - p)p + 3\sum_{a} |[P, A_{a}]|^{2}] *1$$

$$= \int_{M} [\sum_{a,b} (\operatorname{Tr} A_{a} A_{b})^{2} - \sum_{a,b} (\operatorname{Tr} A_{a}) (\operatorname{Tr} A_{b}^{2} A_{a}) - (n - 3)\sum_{a} \operatorname{Tr} A_{a}^{2}$$

$$+ \sum_{a} (\operatorname{Tr} A_{a})^{2} - 3\sum_{a,b} \operatorname{Tr} A_{a} g(A_{a} J v_{b}, J v_{b}) - 2(n - 1)p] *1.$$

For any a, we put $K_a X = A_a X + (\text{Tr} A_a g(Jv_b, X)Jv_b)/(n-1)$ for some b. Since K_a is symmetric, we see that $n \text{Tr} K_a^2 \geq (\text{Tr} k_a)^2$. From this we have

$$(\text{Tr}A_a)^2 \le (n-1)\text{Tr}A_a^2 + 2\text{Tr}A_ag(A_aJv_b, Jv_b)$$

for any a and b. Thus we obtain

$$\sum_{a} (\operatorname{Tr} A_a)^2 \leq (n-1) \sum_{a} \operatorname{Tr} A_a^2 + 2 \sum_{a} \operatorname{Tr} A_a g(A_a J v_b, J v_b).$$

Therefore we see that

$$\int_{M} [|\nabla A|^{2} - 2(n-p)p + 3\sum_{a} |[P, A_{a}]|^{2}] *1$$

$$\leq \int_{M} [\sum_{a,b} (\operatorname{Tr} A_{a} A_{b})^{2} - \sum_{a,b} (\operatorname{Tr} A_{a}) (\operatorname{Tr} A_{b}^{2} A_{a}) + \frac{2}{n-1} \{\sum_{a} (\operatorname{Tr} A_{a})^{2} - (n-1)^{2}p\} - \frac{n+3}{n-1} \sum_{a,b} \operatorname{Tr} A_{a} g(A_{a} J v_{b}, J v_{b})] *1.$$

On the other hand, we have $|\nabla A|^2 \ge 2(n-p)p$ (see [2]) and hence the left hand side of this inequality is nonnegative. Moreover, from the assumption we see that the right hand side of this inequality is nonpositive. Consequently, we have $\sum_{a} (\operatorname{Tr} A_a)^2 = (n-1)^2 p$, $(\operatorname{Tr} A_a A_b)^2 = (\operatorname{Tr} A_a)(\operatorname{Tr} A_b^2 A_a)$ and $\operatorname{Tr} A_a g(A_a J v_b, J v_b)$ =0 for any a and b. By a similar method as that used in the proof of theorem 1 we see that p=1. Therefore our theorem follows from theorem a.

Tokyo Institute of Technology and Hirosaki University

REFERENCES

- [1] M. Okumura, Compact real hypersurfaces with constant mean curvature of a complex projective space, J. Differential Geometry, 13 (1978), 43-50.
- [2] K. Yano and M. Kon, Differential geometry of CR-submanifolds, to appear in Geometriae Dedicata.