GENERIC SUBMANIFOLDS WITH SEMIDEFINITE SECOND FUNDAMENTAL FORM OF A COMPLEX PROJECTIVE SPACE

By Kentaro Yano and Masahiro Kon

0. Introduction

Let $C P^{n+p}$ denote the complex projective space of real dimension $n+p$ ((complex dimension $(n+p) / 2)$ with constant holomorphic sectional curvature 4. We denote by J the almost complex structure tensor field of $C P^{n+p}$. Let M se a real n-dimensional Riemannian manifold isometrically immersed in $C P^{n+p}$.

We denote by g the Riemannian metric tensor field induced on M from that rof $C P^{n+p}$.

When the transform of the normal space $T_{x}(M)^{\perp}$ at x of M by J is always tangent to M, that is, $J T_{x}(M)^{\perp} \subset T_{x}(M)$ for any $x, T_{x}(M)$ being the taugent space at x of M, the submanifold M is said to be generic in $C P^{n+p}$. If M is .a real hypersurface of $C P^{n+1}$, then M is obviously a generic submanifold.

In [1], Okumura proved the following theorems:
THEOREM A. Let M be a compact orientable real hypersurface of $C P^{n+1}$ with constant mean curvature such that the second fundamental form A is semidefinite. If $\operatorname{Tr} A^{2} \leq n-1$, then $\operatorname{Tr} A^{2}=n-1$ and $M=M_{p, 0}^{C}, p=(n-1) / 2$.

THEOREM B. Let M be a compact orientable real hypersurface of $C P^{n+1}$ with constant mean curvature such that the second fundamental form A is semidefinite. If $(\operatorname{Tr} A)^{2} \leq(n-1)^{2}$, then $M=M_{p, 0}^{C} \quad p=(n-1) / 2$.

The purpose of the present paper is to prove generalizations of theorems A and B for generic submanifolds of $C P^{n+p}$ with flat normal connection.

1. Preliminaries

Let M be an n-dimensional generic submanifold of $C P^{n+p}$. For any vector field X tangent to M, we put $J X=P X+F X$, where $P X$ is the tangential part of $J X$ and $F X$ the normal part of $J X$. Then P is an endomorphism on the
tangent bundle $\boldsymbol{T}(M)$. The operator of covariant differentiation with respect: to the Levi-Civita connection in $C P^{n+\phi}$ (resp. M) will be denoted by $\bar{\nabla}$ (resp. ∇). The Weingarten formula is given by $\bar{\nabla}_{\dot{X}} V=-A_{V} X+D_{X} V$ for any vector field X tangent to M and any vector field V normal to M, where D denotes. the operator of covariant differentiation with respect to the linear connection. induced in the normal bundle $T(M)^{\perp}$ of $M . A$ is called the second fundamental form of M. For any normal vector V, A_{V} is a symmetric linear transformation on $T_{x}(M)$. Let $\left\{v_{a}\right\}$ be an orthonormal frame for $T_{x}(M)$. Then the mean curvature vector μ of M is defined to be $\mu=\sum_{a} \operatorname{Tr} A_{a} v_{a^{\prime}}$, where $A_{a}=A_{v_{a}}$. If $D \mu=0$, then μ is said to be parallel. For any vector X tangent to M and any vector V normal to M, if $g\left(A_{V} X, X\right) \leq 0$ or $g\left(A_{V} X, X\right) \geq 0$, then the second fundamental form A of M is said to be semidefinite. We now define the curvature tensor R^{\perp} of the normal bundle of M by $R^{\perp}(X, Y)=\left[D_{X}, D_{Y}\right]-D_{[X, Y]}$. If R^{\perp} vanishes identically, then the normal connection of M is said to be fiat. If the normal connection of M is flat, we can choose an orthonormal frame $\left\{v_{a}\right\}$ of the normal bundle such that $D v_{a}=0$ for all a. Now we have

LEMMA 1. ([2]). Let M be an n-dimensional generic submanifold of $C P^{n+p}$, with flat normal connection. Then

$$
\left.\left.\sum_{a} \operatorname{div}\left(\nabla_{J v_{a}} J v_{a}\right)=(n-1) p-\sum_{a} \operatorname{Tr} A_{a}^{2}+\sum_{a, b} \operatorname{Tr} A_{a} g\left(A_{a} J v_{b}, J v_{b}\right)+\frac{1}{2} \sum_{a} \right\rvert\,\left[P, A_{a}\right]\right]^{2}
$$ where $\left[P, A_{a}\right]=P A_{a}-A_{a} P$ and $|T|$ denotes the length of the tensor T.

LEMMA 2. ([2]). Let M be an n-dimensional generic submanifold of $C P^{n+p}$ with flat normal connection. If the mean curvature vector of M is parallel; theit

$$
\begin{aligned}
g\left(\nabla^{2} A, A\right)= & (n-3) \sum_{a} \operatorname{Tr} A_{a}^{2}-\sum_{a}\left(\operatorname{Tr} A_{a}\right)^{2}+3 \sum_{a}\left|\left[P, A_{a}\right]\right|^{2}+2 p(p-1) \\
& +\sum_{a, b}\left[3 g\left(A_{a} J v_{b}, J v_{b}\right) \operatorname{Tr} A_{a}-\left(\operatorname{Tr} A_{a} A_{b}\right)^{2}+\left(\operatorname{Tr} A_{a}\right)\left(\operatorname{Tr} A_{b}^{2} A_{a}\right)\right]
\end{aligned}
$$

- Model space: Let S^{n+2} be sphere with radius 1. In S^{n+2} we have the family of generalized Clifford surfaces $M_{p, q}=S^{p}(\dot{r}) \times S^{q}(r), r_{1}^{2}+r_{2}^{2}=1, \quad p+\ddot{q}=n+1$: By choosing the spheres in such a way that they lie in complex subspaces we get: fibrations $S^{1} \longrightarrow M_{2 p+1,2 q+1} \xrightarrow{\pi} M_{p, q}^{C}$ compatible with Hopf fibration, where $p+$ $\dot{q}=(\ddot{n}-1) / 2$. Thus we see that $M_{p ; q}^{C}=\pi\left(S^{2 p+1}\left(r_{1}\right) \times S^{2 q+1}\left(r_{2}\right)\right), r_{1}^{2}+r_{2}^{2}=1$. In the special case $\mathrm{q}=0, M_{p, 0}^{C}$ is called the geodesic hypersphere.

2. Theorems

First of all, we prove
THEOREM 1. Let M be a compact orientable n-dimensional generic submanifold of $C P^{n+p}$ with flat normal connection such that the second fundamental form is. semidefinite. If $\sum_{a} \operatorname{Tr} A_{a}^{2} \leq(n-1) p$, then $p=1$ and M is the geodesic hypersphere, $\pi\left(S^{n}(r) \times S^{1}(r)\right), r=(1 / 2)^{1 / 2}$, of $C P^{n+1}$.

PROOF. Since M is compact orientable, lemma 1 implies that

$$
\int_{M}\left[(n-1) p-\sum_{a} \operatorname{Tr} A_{a}^{2}+\sum_{a, b} \operatorname{Tr} A_{a} g\left(A_{a} J v_{b}, J v_{b}\right)\right]^{*_{1}}=-\frac{1}{2} \int_{M} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2 *_{1}} .
$$

From the assumptions we see that the left hand side of this equation is. nonnegative. Thus we obtain $\sum_{a} \operatorname{Tr} A_{a}^{2}=(n-1) p, P A_{a}=A_{a} P$ and $\operatorname{Tr} A_{a} g\left(A_{a} J v_{b}\right.$, $\left.J v_{b}\right)=0$ for any a and b. Suppose that $\operatorname{Tr} A_{a}=0$ for some a. Since the second fundamental form is semidefinite, we see that $A_{a}=0$. On the other hand, the equation of Codazzi is given by

$$
\left(\nabla_{X} A\right)_{V} Y-\left(\nabla_{Y} A\right)_{V} X=-g(X, J V) P Y+g(J V, Y) P X-2 g(X, P Y) J V
$$

Putting $V=v_{a}$ and $X=J V$ in this equation, we obtain $g(J V, J V) P Y=0$. Thus we have $P=0$. Then M is anti-invariant and $\sum_{b} g\left(A_{a} J v_{b}, J v_{b}\right)=\operatorname{Tr} A_{a}$ for any a. Therefore $\operatorname{Tr} A_{a} g\left(A_{G} J v_{b}, J v_{b}\right)=0$ implies that $\operatorname{Tr} A_{a}=0$ for all a and hence M is totally geodesic. This contradicts to the fact that $\sum_{a} \operatorname{Tr} A_{a}^{2}=(n-1) p$. Consequently, we must have $\operatorname{Tr} A_{a} \neq 0$ for all a and then $g\left(A_{c} J v_{b}, J v_{b}\right)=0$ for any a and b. Let V be a unit vector normal to M. We take an orthonormal. frame $\left\{V_{a}\right\}$ of $T_{x}(M)^{\perp}$ such that $V=V_{1}$. Then we obtain

$$
\begin{aligned}
\sum_{d} g\left(A_{a} J V_{d}, J V_{d}\right) & =\sum_{b, c, d} g\left(V_{d}, v_{b}\right) g\left(V_{d}, v_{c}\right) g\left(A_{a} J v_{b}, J v_{c}\right) \\
& =\sum_{b} g\left(A_{a} J v_{b}, J v_{b}\right)=0
\end{aligned}
$$

From this we see that $g\left(A_{a} J V, J V\right)=0$ for any unit vector V normal to M. Since A_{a} is symmetic, we obtain $g\left(A_{a} J v_{b}, J v_{c}\right)=0$ for any a, b and c by putting $V=\left(v_{a}+v_{c}\right) / \sqrt{2}$. We now use the following equation of Ricci

$$
g\left(R^{\perp}(X, Y) U, V\right)+g\left(\left[A_{V}, A_{U}\right] X, Y\right)=g(F Y, U) g(F X, V)-g(F X, U) g(F Y, V)
$$

Putting $V=v_{a}, U=v_{b}, X=J v_{a}$ and $Y=J v_{b}$ in this equation, and using $R^{\perp}=0$, we have $g\left(v_{b}, v_{b}\right) g\left(v_{a}, v_{a}\right)-g\left(v_{a}, v_{b}\right)^{2}=0$. Therefore we obtain $p=1$. On the other hand, $P A_{a}=A_{a} P$ implies that the mean curvature of M is constant because of $p=1$ (see [1]). Thus our theorem follows from theorem A.

From theorem 1 we have
THEOREM 2. Let M be a compact orientable real hypersurface of $C P^{n+1}$ such that the second fundamental form is semidefinite. If $\operatorname{Tr} A^{2} \leq n-1$, then M is the .geodesic hypersphere $\pi\left(S^{n}(r) \times S^{1}(r)\right), r=(1 / 2)^{1 / 2}$.

THEOREM 3. Let M be a compact orientable n-dimensional generic submanifold . of $C P^{n+p}$ with flat normal connection such that the second fundamental form is semidefinite. If the mean curvature vector of M is parallel and $\sum_{a}\left(\operatorname{Tr} A_{a}\right)^{2} \leq$ $(n-1)^{2} p$, then $p=1$ and M is the geodesic hypersphere $\pi\left(S^{n}(r) \times S^{1}(r)\right), r=(1 / 2)^{1 / 2}$, . of $C P^{n+1}$.

PROOF. Since M is compact orientable, lemma 2 implies that

$$
\begin{aligned}
& \int_{M}\left[|\nabla A|^{2}-2(n-p) p+3 \sum_{a}\left|\left[P, A_{a}\right]\right|^{2}\right]{ }^{*} 1 \\
& =\int_{M}\left[\sum_{a, b}\left(\operatorname{Tr} A_{a} A_{b}\right)^{2}-\sum_{a, b}\left(\operatorname{Tr} A_{a}\right)\left(\operatorname{Tr} A_{b}^{2} A_{a}\right)-(n-3) \sum_{a} \operatorname{Tr} A_{a}^{2}\right. \\
& \left.\quad+\sum_{a}\left(\operatorname{Tr} A_{a}\right)^{2}-3 \sum_{a, b} \operatorname{Tr} A_{a} g\left(A_{a} J v_{b}, J v_{b}\right)-2(n-1) p\right]^{*} 1 .
\end{aligned}
$$

For any a, we put $K_{a} X=A_{a} X+\left(\operatorname{Tr} A_{a} g\left(J v_{b}, X\right) J v_{b}\right) /(n-1)$ for some b. Since K_{a} is symmetric, we see that $n \operatorname{Tr} K_{a}^{2} \geq\left(\operatorname{Tr} k_{a}\right)^{2}$. From this we have

$$
\left(\operatorname{Tr} A_{a}\right)^{2} \leq(n-1) \operatorname{Tr} A_{a}^{2}+2 \operatorname{Tr} A_{a} g\left(A_{a} J v_{b}, J v_{b}\right)
$$

for any a and b. Thus we obtain

$$
\sum_{a}\left(\operatorname{Tr} A_{a}\right)^{2} \leq(n-1) \sum_{a} \operatorname{Tr} A_{a}^{2}+2 \sum_{a} \operatorname{Tr} A_{a} g\left(A_{a} J v_{b}, J v_{b}\right)
$$

Therefore we see that

$$
\begin{aligned}
& \int_{M}\left[|\nabla A|^{2}-2(n-p) p+3 \sum_{a} \mid\right. {\left.\left.\left[P, A_{a}\right]\right|^{2}\right]^{*} 1 } \\
& \leq \int_{M}\left[\sum_{a, b}\left(\operatorname{Tr} A_{a} A_{b}\right)^{2}-\sum_{a, b}\left(\operatorname{Tr} A_{a}\right)\left(\operatorname{Tr} A_{b}^{2} A_{a}\right)+\frac{2}{n-1}\left\{\sum_{a}\left(\operatorname{Tr} A_{a}\right)^{2}\right.\right. \\
&\left.\left.-(n-1)^{2} p\right\}-\frac{n+3}{n-1} \sum_{a, b} \operatorname{Tr} A_{a} g\left(A_{a} J v_{b}, J v_{b}\right)\right]^{*} 1 .
\end{aligned}
$$

- On the other hand, we have $|\nabla A|^{2} \geq 2(n-p) p$ (see [2]) and hence the left hand side of this inequality is nonnegative. Moreover, from the assumption we see that the right hand side of this inequality is nonpositive. Consequently, we have $\sum_{a}\left(\operatorname{Tr} A_{a}\right)^{2}=(n-1)^{2} p,\left(\operatorname{Tr} A_{a} A_{b}\right)^{2}=\left(\operatorname{Tr} A_{a}\right)\left(\operatorname{Tr} A_{b}^{2} A_{a}\right)$ and $\operatorname{Tr} A_{a} g\left(A_{a} J v_{b}, J v_{b}\right)$ $=0$ for any a and b. By a similar method as that used in the proof of theorem 1 we see that $p=1$. Therefore our theorem follows from theorem B.

Tokyo Institute of Technology
 and
 Hirosaki University

REFERENCES

[1] M. Okumura, Compact real hypersurfaces with constant mean curvature of a complex projective space, J. Differential Geometry, 13 (1978), 43-50.
[2] K. Yano and M. Kon, Differential geometry of $C R$-submanifolds, to appear in Geometriae Dedicata.

