Kyungpook Math. J. Volume 20, Number 1 June, 1930

ON FIXED POINT THEOREMS IN COMPACT METRIC SPACES

By Cheh-Chih Yeh

The results of this paper are inspired by two recent papers of Fisher [2] and Khan [3]. They proved that a continuous mapping T of a compact metric space (X, d) has a unique fixed point if T satisfies

$$d(Tx, Ty) < \frac{1}{2}(d(x, Ty) + d(y, Tx)),$$

or

$$d(Tx, Ty) < (d(x, Tx)d(y, Ty))^{\frac{1}{2}}$$
 for all x, y in X with $x \neq y$.

The main purpose of this paper is to extend their results to a more general case. For related results, we refer to Ciric [1] and Yeh [4].

THEOREM 1. Let T be a continuous mapping of a nonempty compact metric space (X, d) satisfying

$$(C_1) d(Tx, Ty) < \max\{d(x, y), \frac{1}{2}(d(x, Tx) + d(y, Ty)), \\ \frac{1}{2}(d(x, Ty) + d(y, Tx)), (d(x, y))^{-1}d(x, Tx)d(y, Ty), \\ a(x, y)d(x, Ty)d(y, Tx), (d(x, Tx)d(y, Ty))^{\frac{1}{2}}, \\ b(x, y) (d(y, Tx)d(x, Ty))^{\frac{1}{2}}\}$$

for all x, y in X with $x\neq y$, where a(x, y) and b(x, y) are nonnegative real functions, then T has a fixed point. If in addition $a(x, y) \leq (d(x, y))^{-1}$ and $b(x, y) \leq 1$, then T has a unique fixed point.

PROOF. Define a real valued function f on X by f(x)=d(x, Tx). Since d and T are continuous functions, it follows that f is a continuous function on X. Since X is compact, it attains its minimum value and so there is a point u in X such that $f(u)=\inf\{f(x):x\in X\}$. If $u\neq Tu$, then it follows from (C_1) that

$$d(Tu, T^{2}u) < \max\{d(u, Tu), \frac{1}{2}(d(u, Tu) + d(Tu, T^{2}u)), \frac{1}{2}(d(u, T^{2}u) + d(Tu, Tu)), (d(u, Tu))^{-1}d(u, Tu) d(Tu, T^{2}u),$$

$$a(u, Tu) \ d(u, T^{2}u)d(Tu, Tu), \ (d(u, Tu)d(Tu, T^{2}u))^{\frac{1}{2}},$$

$$b(u, Tu) \ (d(u, T^{2}u)d(Tu, Tu))^{\frac{1}{2}}\}$$

$$\leq \max\{d(Tu, T^{2}u), \ d(Tu, T^{2}u), \ d(Tu, T^{2}u), \ d(Tu, T^{2}u), \ d(Tu, T^{2}u),$$

$$0, \ d(Tu, T^{2}u), \ 0\} = d(Tu, T^{2}u)$$

ra contradiction. This contradition proves that Tu=u.

Next we prove that u is unique for $a(x, y) \le (d(x, y))^{-1}$ and $b(x, y) \le 1$. Suppose that $v(\ne u)$ is a fixed point of T. Then

$$d(u, v) = d(Tu, Tv) < \max\{d(u, v), 0, d(u, v), 0, d(u, v), 0, d(u, v)\}$$

= $d(u, v)$

a contradiction. This contradiction proves the uniqueness of u. Thus our proof is complete.

THEOREM 2. Let T be selfmapping of a metric space (X, d) satisfying

$$d(Tx, Ty) \ge \max\{d(x, y), \frac{1}{2}(d(x, Ty) + d(y, Tx)), \frac{1}{2}(d(x, Tx) + d(y, Ty)), (d(x, Tx) d(y, Ty))^{\frac{1}{2}}, d(y, Tx)d(x, Ty)^{\frac{1}{2}}\}$$

for all x, y in X. Then T is the identity mapping on X.

PROOF. For any point x in X, we have

$$0=d(Tx, Tx) \ge \max\{d(x, x), \frac{1}{2}(d(x, Tx)+d(x, Tx)), \frac{1}{2}(d(x, Tx)+d(x, Tx)), (d(x, Tx))d(x, Tx)^{\frac{1}{2}}, \frac{1}{2}(d(x, Tx)d(x, Tx))^{\frac{1}{2}}\}=d(x, Tx).$$

Hence d(x, Tx) = 0 or Tx = x. This proves our theorm.

Department of Mathematics Central University Chung-Li, Taiwan.

REFERENCES

[1] Lj. Ciric, A certain class of maps and fixed point theorems, Publ. Inst. Math., 20 (34) 1976, 73-77.

- [2] B. Fisher, A fixed point theorem for compact metric spaces, Publ. Math., 25(1978), 193-194.
- [3] M.S.Khan, On fixed point theorems, Math. Japonica 23(1978), 201-204.
- [4] C.C. Yeh, A fixed point theorem in orbitally complete metric spaces, Publ. Inst, Math., 24(38)1978, 5-8.