Kyungpook Math. J. Volume 20, Number 1 June, 1980

SUBSETS WITH NO CLUSTER POINTS

By Y.L.Lee

The purpose of this paper is to prove that in a manifold of dimension ≥ 2 ,

for any two sets A and B having no cluster points and having same condinality, then there exists homeomorphism f such that f(A)=B. Then we use this property to study the topology \mathscr{V} with the same class of homeomorphisms $H(Z,\mathscr{U})=H(X,\mathscr{V})$. By manifold we always mean separable connected manifold without boundary.

THEOREM 1. Let X be a manifold with dimension ≥ 2 and A, B are subsets of X with no cluster point and have same condinality. Then there exists a homeomorphism f of X onto itself such that f(A) = B.

PROOF. Since A and B have no cluster points, the condinality of A and B is at most countable. If A and B have same finite number of points. Then by the homogeneity of X, we have a homeomorphism f of X onto itself such that f(A)=B. If A and B are countable, let $A = \{a_1, a_2, \ldots, a_n, \ldots\}$ and $B = \{b_1, b_2, \ldots, b_n, \ldots\}$

First choose an open connected set U_1 such that $\{a_1, b_1\} \subseteq U_1$ and $cl(U_1) \cap$

(({a₂,..., a_n,...})∪{b₁,..., b_n,...})=\$\phi\$ and X\U₁ is a connected manifold and a
homeomorphism f₁ with f₁(a₁)=b₁ and f₁(x)=x for x∉U₁. After constructing
"U_{n-1}, choose U_n to be an open connected set such that
cl(U_n)∩(cl(U₁)∪...∪cl(U_{n-1})∪{a_{n+1}, a_{n+2}...}∪{b₂,...,b_n,...})=\$\phi\$
and X\U{cl(U_i)|i=1, 2,...,n} is a connected manifold. In this way we constructed a sequence of open connected sets and sequence of homeomorphism
.{f_n} such that f_n is fixed outside U_n and f_n(a_n)=b_n. Then let f be the function
.{f_n} is a homeomorphism and f(A)=B.

This result is useful in studying the classes of homeomorphisms. THEOREM 2. Let (Z, \mathcal{U}) be a manifold and $H(Z, \mathcal{U})$ the class of homeomorphisms of (X, \mathcal{U}) onto itself. Let $\mathcal{V} = \{U \in \mathcal{U} | U = \phi \text{ or } X \setminus U \text{ has no cluster point.}\}$

Y.L.Lee

then \mathscr{V} is a topology in X and $H(X, \mathscr{U}) \subsetneq H(X, \mathscr{V})$

32

PROOF. It is clear that \mathscr{V} is a topology and $H(X, \mathscr{U}) \subset H(X, \mathscr{V})$. To see thet $H(X, \mathscr{U}) \neq H(X, \mathscr{V})$, take a point $p \in X$ and an open ball U with center p. Let f be a function which makes a rotation on U on any direction of angle between 0 and π , and fixed outside U, then $f \in H(X, \mathscr{V})$ but $f \notin H(X, \mathscr{U})$.

COROLLARY. Let (X, \mathcal{U}) be a manifold and $\mathcal{V} \subset \mathcal{U}$ is a topology on X. If $H(X, \mathcal{U}) = H(X, \mathcal{V})$, then there exists $V \neq \phi$ in \mathcal{V} such that $X \setminus V$ contains cluster points.

PROOF. Let dim $(X, \mathscr{U}) \geq 2$. Then there exists $\phi \neq V \in \mathscr{V}$ with $X \setminus V$ containsinfinitely many points. Because otherwise, by theorem $1 \mathscr{V} = \{V \in \mathscr{U} | V = \phi \text{ or } Card (X \setminus V) \leq m\}$ for some positive integer m. Then $H(X, \mathscr{V})$ would be the set of all one to one functions of X onto itself. If $X \setminus V$ contains no cluster points for every non-void V in \mathscr{V} then by theorem 1 again $\mathscr{V} = \{V \in \mathscr{U} | V = \phi \text{ or } Card (X \setminus V) \leq \aleph_{J} \text{ and } X \setminus V \text{ has no cluster points}\}$. By theorem 2, $H(X, \mathscr{V}) \supseteq H(X, \mathscr{U})$. If dim $(X, \mathscr{U}) = 1$, and X is a circle, and for every non-void $V \in \mathscr{V} \setminus V$ contains no cluster point, then $X \setminus V$ is a finite set, it is easy to see $\mathscr{V} = \{V \in \mathscr{U} | V = \phi \text{ or } Card(X \setminus V) \leq m\}$ for some positive integer m and $H(X, \mathscr{U}) \subseteq H(X, \mathscr{V}) =$ the set of all one-one onto maps. Hence there is $V \neq \phi$ with $X \setminus V$ contains infinitely many points. Since X is compact, $X \setminus V$ has cluster points. If X is a real line, by similar argument, there exists $V \neq \phi$ in \mathscr{V} such that Card $(X \setminus V) = \aleph_0$. If $X \setminus V$ has no cluster point and $X \setminus V$ is unbounded in both side, then it is easy to see

that there exist $f \in H(X, \mathcal{U})$ with $f(X \setminus V)$ = the set of all integers. Also there exist $g \in H(Z, \mathcal{U})$ such that

$$g(X \setminus V) = \{1, 2, 3, ...\} \cup \left\{-\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}, ...\right\}$$

Hence $f(X \setminus V) \cap g(Z \setminus V)$ = the set of all positive integers which is closed (Z, \mathscr{V}) . If $Z \setminus V$ is unbounded in one side, then there exist f, g in $H(Z, \mathscr{U})$ such that $f(X \setminus V)$ = the set of all non-negative integers $g(Z \setminus V)$ = the set of all non-positive integers. Hence the set of all integers is closed in (X, \mathscr{V}) and $\mathscr{V} \supset \{V \in \mathscr{U} \mid V = \phi \cdot or X \setminus V \text{ has no cluster points.}\}$

However, if \mathscr{V} does not contain any non-void V with $X \setminus V$ having clusterpoints then $H(X, \mathscr{V}) \subsetneq H(X, \mathscr{U})$. This contraction proves that there exists: $V \neq \phi$ in \mathscr{V} with $X \setminus V$ contains cluster points.

Kansas State University