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ON THE INTEGRAL THEORY OVER DIFFERENTIABLE
MANIFOLDS* (II)
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1. Introduction

Throughout this paper, by M we mean a real n-dimensional differentiable manifold,
which is paracompact. Furthermore, we put

(i) T(M)x =the tangent space on x&=M.

(ii) T(M) =the total tangent space of M.
(iii) T*(M)x=the dual space of T(M)x

(iv) T*(M) =the dual space of T(M)

(v) X¥(M) =the set of all vector fields over M.

(vi) A*(M) =T{AT*(M)}, where for a vector bundle

& =(E£,P,X), '(E) is the set of all cross sections of &.
In (3], we have already proved some properties with respect to the integral over

differentiable manifolds. The purpose of this paper is to introduce the Lie derivatives
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on the differentiable manifolds and for a vector field X on a differentjable manifold
to prove that the integral of dévX, which is the divergence of X with respect to the
given Riemannian matrix of a differentiable manifold, is zero.

It will be illustrated in the second section of this paper the definition of Lie deri-
vatives and proved some properties of Lie differential. Finally, we shall prove in the

third section scme properties of i X(Theorem 3.2) and cur main theorem

fudivX . V:J',{_\,fv:O

for V= y]gl dx’Aeeeeerne Adx" = A"(M) (Theorem 3.3).
2. Lie Derivatives

For a manifold M we put

T(a,0) =T(M)@ - RTMD T*HM)Q-&THM).

a-times b-times

“Then T(a,b) is said to be a vector bundle of (a,b)-type, and each cross section of

T(a,b) is called a temsor field of (a,b)-type.
Let {U, (xbeee-e- x*)} be a locally coordinate neighborhood of M. Then T(M) {U has

the locally basis {—5,— ~£n } and T*(M) | U has the locally basis {dx?---dx"}

which is the dual basis of {_B%’ 'a%r} . In this case, for each §<=I'{T (a,bd))}

we can put such that

- , vy 0=
5324 Eri.. te VJ...‘/b._a%{.’ ‘:)s) - Cydx‘” @...@dst

(DEFINITION 2.11 Let & be a tensor field of (a,4)-type. For any W,, --W, & Al(M)
and X , X, &= X(M), and for each x=M  we define
& (oo War X Xp)(x)=<8(x), w, (DD Qwa(x) @X 1 (%) - BXp(2)>,

where for &, »==T(M), <(& %> is the inner product of ¢ and 7.
(Note)
S @ Dl DN @AY GO Dy B B>

= /—va‘-—\ ml\ ono(/ a
=< ax“ dx > “~ a !

M - a vl\v\ a v
pen ax a>’\'a£ﬁ‘ , dx //"‘<"a“x‘,},; . dxVe>

= 5“1-1 5#2’-2 """ 5!‘a'rxa anlul 5'12»2 """" 5n6u6-



On the Integral Theory over Differentiable Manifolds (I ) 3

We can easily prove from the definition 2.1 that & is a multiplier map as a C(M)-
module and the converse is true, where C(M) is the set of all C”™~functions from M to R.

For each Xe=X(M) a linear map

Lx: M'{T(a,b)y—I'{T(a,b)}

is defined as follows:

(i) The case: a=b=0.

Since I'{T(a,b)}=C(M), for fC(M) we define Lyf =X(f), where

0
ox*

XD =X@)S=E X2 for X(0)=F X'(x)

(ii) The case: a=1 and 6=0.
Since I'{T(a,b}=%{M}, for Ye<X(M) we define Ly¥ =[X,Y 1.

(iii) The case: a=0 and b=1.
Sine I'{T(a,b)}=AN(M), for AN (M) we define
(L&)(Y)=X(6(Y))—&{(X,Y]) for YEX.

In the above cases it is clear that Ly is a linear map from .I’{T(a,b)} to itself.

That is, the following is obvious:

(2) Lu(f,8)=SLxg +Lxf& (f,g=C(M))
&) Lx(f,Y)=fLeY +(Lxf )Y (fECM). YEX(M)(2.1)
(©) Lx(f, ) =L+ (Lxf)-§  (SECM), §=A(M))

[PROPOSITION 2.2] Lixsyl=Lx-Ly—Ly-Lx.
PROOF. It suffices to prove the case (iii).
For é=Al(M) and Ze=X(M) we have
{Lix, 26N (D =[X,YI8(2)-E{[X, Y ], Z}
=X{YE§(D} -V {X§(D) - SUIX, [Y, 210 +&{LY, [X,2]])
=(Lx-Ly§)(Z)— (Ly-LxE)(2).
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[DEFINITION 2.3] Given a vector field Xe=X(M) we define that for a tensor field
&=l {T(a,b)}

(Lx8)(pe - tWar XpoeoreXp)
=Ly (&g Xpoooeer X"}*,é EQwyeo Lyt oo tar Xiooor Xp)
- E E(u)‘ ...... Wy XI ------ LX X‘ ...... Xb)r
where wy, w, EA(M) and Xy, s =X (M),

In this case, Ly& is said to be the Lie derivative of § with respect to X.

[ PROPOSITION 2,43
(1) Lx:l'{T(a,b)}——I'{T(a,b)} is a linear map.
(ii) For &l {T(a,b)} and y&l{T(a,B)} Lx(§R®7)=LxE&0+E@Lyn.
(iii) Lixsyi=Lyx+ Ly—Ly * Ly,

PROOF. (i) For #,@-Quw.X /R RX,SAM@ - RAMISEM)®- QE(M)

a-times b-times

and f&C(M), we easily see the following by the expression (2-1).

(Lx&) (e Sy, eenees Wy Xypooore X))
:_-:(Lxe)(wl ...... wa,‘x'] ...... fX‘ ...... Xb)
=S (Lx§) (awy oo Way Xpooores Xv).

(ii) Sine (§Q7)(wrwar w’ sy w’a?y XoXuy X1 X’4)
=&8(wy e Wey X1 Xp) B o gy X7y Xp)
for é=r{T(a,b)} and 7=I{T(a,b)} we have
Lx(§&M) (wrrwe w'yw' e’ Xy Xy X1 X's7)
=Lx(§(wr-way XeoXo)) « P’ row’ oty Xy X7y0)

a
- S e(wl"'LX Wy Wy XI"'XI}) . v(w"...w’“l' XII"'X’b,)
$=

~ % B war XpLyx XowrXy) o 007 oty X7 X740
t71

+&(wi e Xy Xy) Ly(mlw’ pewtor, X0pX142))

=& Wey Xy oo Xy) % W’ g Lxw’sr-w’ oty X X'37)

$7=

’

_e(wl...wa, Xz"'Xb) 23 W(w'l'"'W'.;’: X'y--Lx X','---X’;,')

r=1

-
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3’(Lx5®77)(w1"'wu w pew yr, XXy, X'l"'X'b’)
”5'("3@14:(77)(101"'3”;. w/,!"‘w’g’, tX’j"'Xb, X’["'le’)
=(Lx§@7+E@Lxn) w1 way w'w’oty XpoXs, Xy X?yrd)

(iii) For §&I'{T(a,b)} we may assume using a partition of unity that the carrier
-of § is in a coordinate neighborhood U as a compact set.

Then & is a linear combipation of forms

z‘(}@ ...... @Xa ...... ®771® ...... @%-
where X; (i=1,2,,a)c=%¥(M) and %,(=1,2, -, b)cA(M) have their carriers in U.

From (ii), since Lpwy(XiQ X780 &7s)
'T:L[X,y3X1®(X2®“'@Xa‘@’h@“‘@ﬂb)
%-X:®L[X,yj(x,er®~-®Xa®m®--@m) (by proposition 4.2)
=(Ly+ Ly—Ly * L) (X;RX:&-@X. @& &7s)
'"['X’®(L[X«Y]X3)® (Xs® DX B7E @)
+X2®L[X"YJ(X‘a@"'@Xa®7?z®“'®7?b)

...............

=(Lx* Ly=Ly » Ly) (Xi® - @XaE9,8 @) »
‘we have

L[X'Y)zLx . Ly""Ly . Lx. QuE-D.

For Xe=¥(M) and §=A,(M) we define
{i(X)f}(Xz """ X,,;)?—‘G(X,Xg """ Xg-x)»
Where Xp "'Xp-lay(bll)o That iSI

i(X): (T, P} —— LT, p— 1}
§ i (X)E.

[PROPOSITION 2.] For ¢=AYM) we have
Li=¢(X)dé+di(X)E.

PROOF. FOR X X,&=X(M)
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{({(X)dEV(X - X,) =dE(X, X+ X,)
————X{E(X:---XP)HéI (=X AEX, XXX )}

+i+ - -
+5ED" XX R XX
e (- ey x0T, XK X X,)

=XEG-X+ BN XL, XXX,

i+n+it

+ ‘2’;5-1)fx,-{ex.ff,-da--.x,,)} +2-D EIX0 X0 X, X X o Xy)

iei

= (L) (XX ) — (di(XDEH(X X ).

Therefore, we have

L& =i(X)d&E+di(X)E. ; , Q.E.D.
3. Divergences and Laplacian Operators

Since a manifold M has a Riemannian metrix £, we put

d 0
gZM(X)-‘—: ( axﬁ , ax“{ )x (#,021’2, ...... ,”)

on a locally coordinate neighborhood {U,, {(xa,-,x%)} of M. Thus, g5(X) is an

0

a
. and - in T(M)x.

inner product of P o

Put  gor (g2) = (g) = (g8 "D =(det (g3,))"",

then g5* is an inner product.of dxzand dxi in T*(M)x.
The cannonical isomorphism form I'{T (M)} to I'{T*(M)} is define by the following

maps. For each locally coordinate neighborhood {U,(#*--2™)} of M,

r{T(M)|U) 35;1 af‘(x)_éa‘ 'W”“’é“; [z} gh(x)a”(x)} A (T*(M)|U).

X
and

PIT*ANDIU) D punds =3 [T g0 (0] erTOnIv).

Sine dfe=l{T*(M)} for fe=C(M) we have by the above map

PATS ) —(TAD)
 wdf . D (-1
At o P
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because of that df ::v‘i ~aa_£.dx“.

[DEFINITION 3.17 For V=[det (g**)}}dx’ A Adx" €=A(M) we define
LyV =divXV, where Xe=X(M)

Since L/ezA"(M) we bave dieX&C(M). In this case, divX is called the divergence

of X with respect to the given Riemannian matrix g”. We put

4 "“’..aj,._::
2y P grad f

which is called the gradient of f. We also put
Of =div grad f,

which is called the Laplacian operator of f.

'THEOREM 3.2] 1If we put det(gs)=lgl. X= gll x"-a%e,

then we have

divX = L_g%__ - ﬁ%l X algﬁlé"

n 2 " 1Y
A = 2% g#v 0%if ; "‘I(ag gwalﬂglgi)_@f,_

PR T P SR G 72 o

L

PROOP. Since V== v|g{dx'A---Adx", for Xy Xae=X (M) we have

L (Xp+Xa) = LlV (XX )} = B V(X LeX oo X)

=X ( VIg1det(Xords)) = B V(X [X X T Xa)

: Z‘ "-—-—~,.~ vigl dei(Xndx’H-L Vgl dez(X.,dxf)

ax"
” aiog gl o s
( ZX ! +‘/ a"i&"’“) Vv lgl det{X;, dx'}

=divX - V(Xg Y )y

which implies that
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divX =73, 9% +~§- 5 x+0 loglgl |
p2

1 0x* e ox"

Using the expression (3-1) above, we have

Af=div grad f=div ( i:lgm_ﬁi_ ? )

v o
— 5 0 g v af I $ o v“a_.z:__ alﬂglg‘l_~
~1izﬂ:1 ox® (é:‘g" ox ) +w2~;4=1 (élg" ax” ) et
o O 3 og” . 1 . dloglgl \ 0f
.—#,Zi‘ﬂgp 737"3? +h.vnz ( ox* + 2«3”‘ ox" ) ox’ ' Q‘E'D.
[THEOREM 3.3] For V=gl da'd---Adx. €A™ (M),
if M is orientable then
[ dioX < v= [ or-0.=0
PROOF For v= 4|g] dx’'A--Adx™ wc have
Lyw=divX « v=1(X)dv +d(i{(X)v). (proposition 2.5}
From dv=0 we have
divX » v= Ly =d{{(X)v).
Since M is orientable, by Theorem 8 in [3), we have
[ divxv= [ d6xom)=o.
By the same reason as above we have
[ or = divtgradf) - v= [ d(i(grad 1v)=0 Q.E.D-
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