ON SOME RELATIONS OF TWO 2-DIMENSIONAL UNIFIED FIELD THEORIES

BY PHIL UNG CHUNG

1. Introduction

A. 2-dimensional g-UFT and *g-UFT. In the usual Einstein's unified field theory (g-UFT) the generalized 2-dimensional Riemannian space X_2 referred to a real coordinate system x^{ν} is endowed with a real nonsymmetric tensor $g_{\lambda\mu}$ which may be split into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $h_{\lambda\mu}$:

$$(1.1)a g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where

$$(1.1)b Q = \operatorname{Det}(g_{\lambda\mu}) \neq 0, \quad d = \operatorname{Det}(h_{\lambda\mu}) \neq 0, \quad \mathcal{K} = \operatorname{Det}(k_{\lambda\mu}) \neq 0.$$

The tensor $h_{\lambda\mu}$ together with $h^{\lambda\nu}$, uniquely defined by

$$(1.2) h_{\lambda u} h^{\lambda \nu} = \delta_{u}^{\nu},$$

are used for raising and/or lowering indices in 2-dimensional g-UFT.

The differential geometric structure is imposed on X_2 by the tensor $g_{\lambda\mu}$ by means of a connection $\Gamma_{\lambda^{\nu}\mu}$ given by the system of Einstein's equations [3] $D_w g_{\lambda\mu} = 2S_{w\mu}{}^{\alpha}g_{\lambda\alpha}$,

where D_{w} denotes the symbol of the covariant derivative with respect to $\Gamma_{\lambda\mu}^{*}$, and $S_{\lambda\mu}^{"} = \Gamma_{[\mu\lambda]^{*}}^{*}$

On the other hand, 2-dimensional $*g^{\lambda\nu}$ -unified field theory (*g-UFT) in the same space X_2 referred to a real coordinate system x^{ν} is defined to be based upon the real nonsymmetric tensor $*g^{\lambda\nu}$ defined by

$$(1.5) g_{\lambda\mu}^* g^{\lambda\nu} = \delta_{\mu}^{\nu}.$$

It may also be decomposed into its symmetric part $^*h^{\lambda\nu}$ and skew-symmetric part $^*k^{\lambda\nu}$:

$$(1.6) *g^{\lambda\nu} = *h^{\lambda\nu} + *k^{\lambda\nu}.$$

Since $\operatorname{Det}({}^*h^{\lambda\nu})\neq 0$, we may define the tensor ${}^*h_{\lambda\mu}$ by

$$(1.7) *h_{\lambda\mu}*h^{\lambda\nu} = \delta_{\mu}{}^{\nu}.$$

In the 2-dimensional *g-UFT we use both * $h_{\lambda\mu}$ and * $h^{\lambda\nu}$ as tensors for raising and/or lowering indices of all starred tensors defined in X_2 in the usual manner.

^(*) Throughout the present paper, Greek indices take the values 1,2 and follow the summation convention.

We then have, for example,

(1.8) a
$$*k_{\lambda\mu} = *k^{\rho\sigma} *h_{\lambda\rho} *h_{\mu\sigma}, *g_{\lambda\mu} = *g^{\rho\sigma} *h_{\lambda\rho} *h_{\mu\sigma},$$

so that

(1.8) b
$$*g_{i\mu} = *h_{i\mu} + *h_{i\mu}$$

Similarly the differential geometric structure in 2-dimensional *g-UFT is imposed on X_2 by means of a connection $\Gamma_{i\alpha}^*$ given by the following system of equations equivalent to (1.3):

$$(1.9) D_{\omega}^* g^{\lambda \nu} = -2S_{\omega \alpha}^* g^{\nu \lambda \alpha}.$$

Using the following densisties and ascalars, we define the following:

*
$$Q = \operatorname{Det}(*g_{\lambda\mu}), *d = \operatorname{Det}(*h_{\lambda\mu}),$$

Chung [1] proved that two unified tensor fields $g_{\lambda\mu}$ and $*g_{\lambda\mu}$ are related by

(1.11) a
$$*h^{\lambda\nu} = \frac{1}{g}h^{\lambda\nu}, *k^{\lambda\nu} = \frac{1}{g}k^{\lambda\nu},$$

$$(1.11) b \qquad *h_{\lambda\mu} = gh_{\lambda\mu}, \quad *k_{\lambda\mu} = gk_{\lambda\mu},$$

and that
$$g = 1 + k$$
, $g = 1 + k$.

In both 2-dimensional unified field theories, it is obvious that there exists only the first class since

$$\mathcal{K}=(k_{12})^2>0, *\mathcal{K}=*(k_{12})^2>0.$$

B. Purpose. The purpose of the present paper is to derive some relations of 2-dimensional g-UFT and *g-UFT other than (1.11) and (1.12). These results are used to investigate the relationship between two different expressions of torsion tensor $S_{\lambda\mu}$ which lead to a solution of (1.3) and (1.9) in Einstein's 2-dimensional unified field theories.

2. Some relations of 2-dimensional g-UFT and *g-UFT

In this Section, we derive several relations of two 2-dimensional unified field theories and obtain a simple expression for the torison tensor in 2dimensional *g-UFT.

THEOREM (2.1). The scalars defined in (1.10) are related by (2.1) of many or is says the same of the says the same

(2.2)
$$g*\bar{q}=1$$
, $*g=*c^2*\bar{q}$, $*d=g^2d$, $*\mathcal{K}=g^2\mathcal{K}$, which may be obtained from (1.5), (1.8)a, and (1.11)b. The relations

(2.1) are results of (1.10) and (2.2). An alternative proof of k=k is obtained from (1.12) using g=g.

THEOREM (2.2). We have

(2.3)
$$* \left\{ \begin{matrix} \alpha \\ \lambda \alpha \end{matrix} \right\} = \left\{ \begin{matrix} \alpha \\ \lambda \alpha \end{matrix} \right\} + \frac{g, \lambda}{g} \left(g, \lambda = \frac{\partial g}{\partial x^{\lambda}} \right),$$

where $\begin{pmatrix} \nu \\ \lambda \mu \end{pmatrix}$ and $* \begin{pmatrix} \nu \\ \lambda \mu \end{pmatrix}$ are the Christoffel symbols of the second kind formed with respect to $h_{\lambda\mu}$ and $*h_{\lambda\mu}$, respectively.

Proof. In virtue of (1.11)b, two Christoffel symbols are related by

(2.4)
$$* \begin{Bmatrix} \nu \\ \lambda \mu \end{Bmatrix} = \begin{Bmatrix} \nu \\ \lambda \mu \end{Bmatrix} + \frac{1}{2g} (g, {}_{\mu}\delta_{\lambda}{}^{\nu} + g, {}_{\lambda}\delta_{\mu}{}^{\nu} - g, {}_{\beta}h^{\nu\beta}h_{\lambda\mu}).$$

Hence

$$* \begin{Bmatrix} \alpha \\ \lambda \alpha \end{Bmatrix} = \begin{Bmatrix} \alpha \\ \lambda \alpha \end{Bmatrix} + \frac{1}{2g} (g, \alpha \delta_{\lambda}^{\alpha} + g, \lambda \delta^{\alpha}_{\alpha} - g, \beta \delta_{\lambda}^{\beta}) = \begin{Bmatrix} \alpha \\ \lambda \alpha \end{Bmatrix} + \frac{g, \lambda}{g},$$

which proves (2.3).

THEOREM (2.3). We have

$$(2.5) * \nabla_{\nu} * k_{\omega \mu} = g \nabla_{\nu} k_{\omega \mu},$$

where ∇ , and $*\nabla$, are the symbolic vector of the covariant derivative with respect to $\begin{cases} \nu \\ \lambda \mu \end{cases}$ and $* \begin{cases} \nu \\ \lambda \mu \end{cases}$, respectively.

Proof. Since $k_{\alpha\mu}$ is skew-symmetric, it suffices to show that ${}^*\mathcal{V}_{\nu}{}^*k_{12} = g\mathcal{V}_{\nu}k_{12}$. This result follows in the following way, using (1.11)b and (2.3):

$$\begin{split} *V_{\nu} * k_{12} &= \partial_{\nu} * k_{12} - * \begin{Bmatrix} \beta \\ \nu 1 \end{Bmatrix} * k_{\beta 2} - * \begin{Bmatrix} \beta \\ \nu 2 \end{Bmatrix} * k_{1\beta} \\ &= \partial_{\nu} * k_{12} - * \begin{Bmatrix} \alpha \\ \nu \alpha \end{Bmatrix} * k_{12} \\ &= \partial_{\nu} (g k_{12}) - \left(\begin{Bmatrix} \alpha \\ \nu \alpha \end{Bmatrix} + \frac{g, \nu}{g} \right) g k_{12} = g V_{\nu} k_{12}. \end{split}$$

REMARK. Chung [2] proved that in 2-dimensional g-UFT the torsion tensor $S_{\omega\mu\nu}$ satisfying Einstein's equations (1.3) is given by

$$S_{\omega\mu\nu} = \frac{1}{g} \nabla_{\nu} k_{\omega\mu}$$

In virtue of (2.1) and (2.5), we see that in 2-dimensional *g-UFT the same torsion tensor $S_{\omega\mu\nu}$ (satisfying (1.9)) may be given by a simple expression

$$S_{\omega\mu\nu} = \frac{1}{*g^2} * \mathcal{V}_{\nu} * k_{\omega\mu}.$$

References.

- 1. K. T. Chung & S. K. Kim, On the algebra and Einstein's connection in 2-dimensional *g-UFT, Yonsei Nonchong, 16(1979)
- 2. K. T. Chung, Some recurrence relations and Einstein's connection in 2-dimensional g-UFT, Nuovo Cimento, To be published in 1980
- 3. V. Hlavaty, Geometry of Einstein's unified field theory, P. Noordhoff Ltd., 1957

Yonsei University