
51

Bull. Korean Math. Soc.
Vol. 17, No. 1, 1980

ON THE WREATH PRODUCTS

By JHAEHACK LEE

1. Introduction

In this paper, we study some properties of the wreath product of groups,
and using these properties we give a new proof of the Schur-Zassenhaus
Theorem. In section 2, we will discuss some important properties of the
wreath product and prove the following universal mapping property.

THEOREM 2.3. Let K and H be groups. Let a : K - K;H be a maPPing
defined by a(k) = (eH,fl,), where f,,(eH)=k and fl,(h)=eK for all h=f::.eH.
And let f3 : H - K;H be a mapPing defined by f3(h) = (h, eF). Then a and f3
are injective homomorphisms.

Moreover, given any group G and homomorphisms rp: K-G and ef; : H-G
such that

[rp(K)~(A),rp(K)~(Af)J=l

for all h, h' EH, there exists a unique homomorphism 1) : K;H - G such that
1) • a=rp and 1) • f3=ef;.

The existence of 1) is suggested by [3J, when Hand K are finite. In this
theorem, the universal mapping property of 1) is established in the general
case.

In section 3, we will prove Theorem 3.2 (Schur-Zassenhaus Theorem)
by using the properties of the wreath product. There are several methods
in proving this theorem. Originally Schur proved only (2) of Theorem 3. 2
and later H. Zassenhaus proved (1) of Theorem 3.2 using an inductive
argument based on Schur's result. This theorem can be also derived by
calculating the cohomology groups Infact, HI (G, N) = 1 implies (1) and
H2(G, N) =1 implies (2). Here we shall give another proof of (2). The
key of the proof is to use the conjugacy property (1) and the properties of
the wreath product.

The notation of this paper is standard. It is taken from [3J and [5J.
We denote the center of G by Z(G) and the centralizer of a subgroup H
in G by eG(H). A subgroup Hof a finite group G is called a Hall
subgroup if IHI and IG: HI are relatively prime. A subgroup H is
called a complement of a subgroup N in G if G=NH and NnH=l.
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2. Som.e properties of the wreath. products

Let H be a permutation group on a set X. For any group K, the wreath
product of K and H is defined as follows-:

Let F be the set of all functions defined on X taking values in K. Then
F is a group under the multiplication given by

(fg) (i) f (i)g (i), iEX.

An action of H on F is induced by the fonnula

fA (i) f(h-1(i», iEX.

It is easy to check that H is a group of automorphisms of F. The semi­
direct product of F and H with respect to the action defined as above is tke
unrestricted wreath product of K and 11, which is denoted by KWrH. TAe
restricted wreath product, denoted by KwrH, is the semi-direct product
of Fa and H where Fa is the subgroup of F consisting those functions f
which satisfy.f(i) =eg for all hut finitely many elements of X.

Since Fa isan,H-invariant subgroup of F. the, restricted_ :wr~~h. pr9duct
is a subgroup of the unrestricted wreath product. And it is clear that
KwrH==KwrH if and only if X is finite or K is trivial.

H H is net pieseDtedas a .pem;mtatioo group, then :we ... consider H ,as a
permutation group on the set X= H induced by left multiplication. Thus if
k'f:::H, It acts on :tEX as hex) =h-1x. In this case, the unrestricted [tesp.•
restrictedJ wreath product of K and H is called the standard unrestricted
[resp., staadard restricted] wreath produet, and denoted by K'l. H [reap.•
IOHJ. Thus K'l.H [resp., K;H] is the set of all pairs (h,f) where hEH
and f is a function defined on H taking values in K [resp., satisfying
f(x) =eg for all but fini,tely many elements x of X].

We have
(h.f) (u, g) = (hu,t-g),

whe~e jUg(x) f(u-1(x»g(x) f(ux)g(x) for xEX. And if K and Hare
finite groups, then it is clear that K'LH=1!:.;H and IK'LHI = IKIIlll (HI.
. T~efollowinglemma WIDe»' illtJStrateS' me,structures- ef.·K1.H and,;g)H

will be useful in the next section.

LEMMA 2.1. The standard unrestricted [resp., restricted] 'Wreath product
of K ana H contains a nOrmal Subgroup F* iJnd a- subgroup H* satisfYing
the Properties:

(1) G~F*H*, F*nH*=-(eH,eF) and GIF*='H*~H,

(2) F* is isomorphic to the direct proiluct [reap., direct sum] of IHI coPies
of K.
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Proof. First, assume that G is the standard unrestricted wreath product
of K and H. Let H*={(h,eF)lhEH}, where eF(xi)=eK for all XiEH.

Then clearly H*2!E.H. Let

F*= {(eH, f) If : H~K},

and

Fzj= {(eH, f) If(Xj)=eK for Xj*Xi}'

Then Fzj;;;..K and F*= IfFz,'
",eH

The mapping e : G-+H defined by c(h,j) =h is an epimorphism of G onto
H with kernel F*. Hence G/ F* 2!E. H* 2!E. H. Since

(h,j) = (eH,l'a- 1
) (h, eF),

we have F*H*=G and F*nH*= {(eH,eF)}'

We can give a similar proof for the standard restricted wreath product.

LEMMA 2. 2. Let G be the (standard) unrestricted wreath product of group
K and H. For a subgroup L of K, let D(L) be the subgroup of G such that

D(L) = {(eH,j) If: H~K is a constant function taking values in L}.
Then

(1) CG(H) =Z(H)D(K), and
(2) Z(G) =Z(D(K».
In particular, if G is the restricted wreath product of K and H, and IHI

is infinite, then Z(G) is trivial.

Proof. (1) Let (h,j) ECG(H). Then

(h,f) (h', eF) = (h', ep) = (h', eF) (h,j)

for all h'EH. Thus we have hh'=h'h and f(h'h) f(h) for all h'EH.
Hence hEZ(H) and f is constant on H. This implies eG(H) =Z(H)D(K).
The converse argument is also valid.

(2) If (h,f) EZ(G), then (h,j)(h',j') = (h',j')(h,j) for all (h',j')'EG.
Hence I'a'f' f'hj. In particular, ff' f'hj for all 1', and fhl f for all h',
that is, f is a constant function. Suppose that h*eH' Let f(eH) =kEK.
Then there exists a function f' : H~K such that f' (eH) =k-1 and f' (h)
*k-1• For this function f', (ff') (eH) =eK but (f'k f) (eH) f' (h)f(eH) =:f=.k-1k
=eK' Therefore ff'=:f=.f'hj. This contradicts to ff' f'hj. Hence h=eH,
which implies (h,f) ED(K) and ff' I'f for all f'. Therefore, we have

Z(G)=D(K) nCGCF*)=Z(D(K»,
where F*= {(eH,j') If' : H~K function}.

H H is infinite group and G is restricted wreath pioduetof K and H, then
D(K) = {(eH,eF)}' Therefore, Z(G)=Z(D(K» is trivial.
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THEOREM 2. 3. Let K and H be groups. Let a: K-+K;H be a ~PPing

defined by a(k) = (eH, I k), where h(eH) =k and h(h) =eK lor all h=l=eH.
And let f3 : H-+K.;.H be a mapPing defined by fJ(h) = (h, e,l). Then a and fJ
are injective lwmomorpkisms.

Moreover, given any group G and homomorphisms <p : K -+ G and </J : H -+ G
such that

[<p(K)~(}i), <p(K)~(k')J=l

lor all h, h' EH, there exists a unique homomorphism 7J: K;H-+G such that
1J • a=q; and 1J . {3=€jJ.

Prool. It is clear that a and {3 are injectivehomomorphisms.
We define a homomorphism 7J from K;H into G by

7J«h,/» =<jJ(k) n <p(f (x) )<jJ(x-1).
zeH

Then 7J is well defined and
Tj(k,f)(k' ,I'» =1j«hk', f'a'f'» =p(hh') n q;(fl,!' (x) ).p(:r- 1

)
zEH

By the definition of the restricted wreath product, there exist only finitely
many x's, say Xl> ... , Xn, in H such that f"I' (x;) =l=eK' Hence

1J(h,f) (h',I'» =cjJ (h)€jJ (h') q; (fl·l' (Xl) )<!J(:&I-D ···<p(f""!' (Xn) )",(:&,,-1)
=<jJ(h) <jJ (h') (<p (f(k'Xl) »"'(:&1-1) ••• (q;(f(h'Xn» )9>(:&,,-1)

(<pU' (Xl» )9>(:&1- 1) ••• (q;(f' (Xn» )9>(z,,-I)
=cjJ(h) (q;(f(k'Xl» )"'«!I:&I)~l) ..• (q;(f(lIx~)))"'«1&f:&,,)-l)

tjJ(h') (<p(f' (Xl» )9>(ZI- 1) ••• (<p(!' (Xn» )cP(z"-1)

=7J((h,f) )1J((h',f»·
Thus 7) is a homomorphism.

Next, we will show that 1J . a=<p and 1J. {3=€jJ. In fact, we have
(1J. a)(k)=1J(a(k»=1j«eH,h»

= €jJ (eH) n <p(h(x) ) <!JC:r-
1

) =<p(k).
",eH

Similarly, we have (1J' (3)(h)=7}((3(h»=1J«h, eF»=€jJ(h).
Finally, we assert the uniqueness of 1j. Let 7J': K;H -+ G he another

homomorphism with 7J' . a=q; and 7J' 0 (3=rjJ. Then for each k in K

1J«eH,h) ) =Tj(a(k» =<p(k) =7J' (aCk» =1J' «eH,/k»,
and for each h in H

7J«h, eF)) =7J' «h, eF»'
Also, for a given (h,f) EK;H, let x; be the finitely many elements of H
such that f(Xi) =k;, R;=I=eK and let I; : H -+ K be defined by fi(Xi) =k; and

"Ji(x)=eK for all xEH,x=I=x;o Then I fl·"/n and
(h,f) = (h, eF) (eH, I) = (h, eF) (eH,fl) ..• (eH,ln).

Since (eH,fi) = (Xi, h.,) (X;-I, eF) = (x;, eF) (eH,h.,) (Xi-I, eF) for each i= I, ..., n,

we have 1J«h,f» =1J' «h,f». Hence 11'=1J.
Thus the theorem is proved.
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3. Sehur-Zassenhaus Theorem

In this section, we will give a new proof of Schur-Zassenhaus theorem.
To do this, we need the following well-known theorem(cf. [5J).

THEOREM 3.1. (Kaloujnine and Krasner). Let G be a group with a normal
subgroup N. Set H=GIN. Then G is isomorphic to a subgroup of the stan~

dard unrestricted wreath product of N and ,H.

THEoREM 3. 2. (Schur-Zassenhaus). Let G be a finite group, and let N be
a normal abelian Hall subgroup of G. Then

(1) If K is a complement of N in G, and L is a subgroup of G such that
G=NL, then c-1Kct;;;;,L for some cEN. In particular, if L is also a complement
of N in G, then L is conjugate to K in G.

(2) There exists a subgroup K of G such that G=NK and NnK=l.

Proof. The proof of (1) is given in[l], but we include it here for the
completeness. Here, we put

INI=m and IG: NI=IKI=n.

First, consider the case N nL=1. Then K and L are complete sets of
coset representatives for N in G, and so there is an isomorphism <p on K.
onto L such that xN=q>(x)N for all xEK. Because N is an abelian group,
and x-1<p(x) EN for all xEK, the product b= n x-I<p(x) is a well-defined

%eK

element of N. Since N is a normal subgroup, therefore, for each yEK,

('*)

because xy runs through K as x runs through K.
Since N is a Hall subgroup, m is relatively prime to n and so ms+at=1

for some integetS s and t. Thus for each aEN, tz8'=a1--=a' a-rJU=a.
And from (*) we get '

,-I6'y= (y-1by)I=b.'{q.>(Y) -ly} .t=b'q;(y) -Iy.

Hence b-ty6'=q;(y) for all yEK, and so c-1Kc=L with c=b'EN. This
proves (1) for this special case. ~

In the general case, N1=NOL is normal in L (because N is normal
in G), and NI is normal in N (because N is abeli8.n), and sO NI is 'normal
in NL=G. The normal abelian Hall subgroup NINI of GIN1 has two
complements KN1/N1 and LIN1 in GIN1. By the result proved above,
"-J,KN1c/N1=L/N,, for some cEN, and so c-1Kct;;;;,c-1KNJ,C ,.L. Thus the
assertion (l) holds.
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We now prove (2) by using the conjugacy property (1). By Theorem 3. 1.
G is isomorphic to a subgroup of N'l.G/N=G1 under the isomorphism 0,
which was defined in the proof of Theorem 3. 1. By Lemma 2. 1. G1

contains a normal subgroup
F*= {(N,f) If: GIN -+ N}

and a subgroup
H*= {<EN, eF) /gNEG/N} :=.G/N

such thl;lt G1=E:*H* anq F* 08*= {(N, eF)}.
We then note that the following hold:
( i) F* nO(G) =O(N).
(ii) F* is a normal abelian subgroup of G1•

(iii) /G1 : F* I= IG : NI = /O(G) : O(N) 1= IO(G) : O(G) nF* I. and
IF*I=INIIJ.

Thus F* is a Hall subgroup of G1•

(iv) H* is a complement of F* in G1•

(v) F*O(G) =G1•

Because of (ii), (iii) and (iv) , we may apply (1) to the group G1 to
conclude that c-1H*cf;O(G) for some cEF*. Then c-1H*c is clearlY a com­
plement of O(N) in O(G). Since 0 is an isomorphism of G onto O(G).
it follows that N has a complement in G..

Thus we have completed the proof of Theorem 3. 2.
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