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ON THE WREATH PRODUCTS

By JuUAEHACK LEE

1. Introduetion

In this paper, we study some properties of the wreath product of groups,
and using these properties we give a new proof of the Schur-Zassenhaus
Theorem. In section 2, we will discuss some important properties of the
wreath product and prove the following universal mapping property.

THEOREM 2.3. Let K and H be groups. Let a : K— K'H be a mapping
defined by a(k) =/ ey, f1), where fileg)=Fk and fi(h)=ex for all h+¥ey.
And let B: H— K}H be a mapping defined by S(h)=(h,er). Then a and ﬁ
are injective homomorphisms.

Moreover, givern any group G and homomorphisms ¢ : K—G and ¢ : H-G
such that

[@(K)¥®, o (K)¢¥W) ]=1
for all b, €H, there exists a unique homomorphism 7 : KYH — G such that
7 a=¢ and 7 - p=¢.

The existence of 7 is suggested by [3], when H and K are finite. In this
theorem, the universal mapping property of 7 is established in the general
case.

In section 3, we will prove Theorem 3.2 (Schur-Zassenhaus Theorem)
by using the properties of the wreath product. There are several methods
in proving this theorem. Originally Schur proved only (2) of Theorem 3.2
and later H. Zassenhaus proved (1) of Theorem 3.2 using an inductive
argument based on Schur’s result. This theorem can be also derived by
calculating the cohomology groups Infact, H!(G, N)=1 implies (1) and
H2(G,N)=1 implies (2). Here we shall give another proof of (2). The
key of the proof is to use the conjugacy property (1) and the properties of
the wreath product.

The notation of this paper is standard. It is taken from [3] and [5]
We denote the center of G by Z(G) and the centralizer of a subgroup H
in G by Cg(H). A subgroup H of a finite group G is called a Hall
subgroup if |H| and |G: H| are relatively prime. A subgroup H is
called a complement of a subgroup N in G if G=NH and NN H=1.
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2. Some properties of the wreath products

Let H be a permutation group on a set X. For any group K, the wreath
product of K and H is defined as follows:

Let F be the set of all functions defined on X taking values in K. Then
F is a group under the multiplication given by '

(fe) D=z, ieX.
An action of H on F is induced by the formula
2@ =F10), ieX

It is easy to check that H is a group of automorphisms of F. The semi-
direct product of F and H with respect to the action defined as above is the
unrestricted wreath product of K and H, which is denoted by KWrH. The
restricted wreath product, denoted by KwrH, is the semi-direct product
of F, and H where F, is the subgroup of F consisting those functions f
which satisfy f(;) =ex for all but finitely many elements of X.

Since F, is an. H-invariant subgroup of F, the restricted wreath product
is a subgroup of the unrestricted wreath product. And it is clear that
KwrH=KwrH if and only if X is finite or K is trivial.

-If.H is net presented as a permutation group, then we . consider H as a
permutation group on the set X=H induced by left multiplication. Thus if
h&H, h acts on 2z€X as k(z)=h1z. In this case, the unrestricted [resp.,
restricted] wreath product of K and H is called zhe standard unrestricted
[resp., standard resiricted] wreath product, and denoted by KrH [resp.,
K!H]. Thus KrH [vesp., KYH] is the set of all pairs (h, f) where k€ H
and f is a function defined on H taking values in K [resp., satisfying

F(z)=eg for all but finitely many elements z of X7.

We have

(&, ) (u, £) = (ha, f*2),
where fig(z) =f(u"1(z))g (z) =f(ux)g(z) for z€X. And if K and H are
finite groups, then it is clear that KxH=K!H and |K2vH|=|K|'E!|H].
- The following lemma which illustrates the-structures- of - KvH and KX
will be useful in the next section.

LEMMA 2.1. The standard unrestricted [resp., restricted] wreath prodict
of K end H contains a normal subgroup F* and a subgroup H* satisfving
the properiies:

(1) G=F*H* F*NH*=(eg, ey) andG/F*"’H*"’H :

(2) F* is isomorphic to the direct prodact [resp . dzrect sam] of |H| copies

of K.
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Proof. First, assume that G is the standard unrestricted wreath product
of K and H. Let H*= {(’2, eF)lhEH}, Where EF(.'L‘,'):EK for all :z:;EH

Then clearly H*=H. Let
= {(en, f)|f : HK},
and
Fo={(en, )1 F (z)) =ex for z;#z}.
Then F,,=K and F*:—ZEHF"'

The mapping ¢ : G—H defined by e(h, f) =h is an epimorphism of G onto
H with kernel F*. Hence G/F*=H*=H. Since

(h’f) = (evah-l) (ha eF)’
we have F¥*H*=G and F*NH*= {(ey, er)}.
We can give a similar proof for the standard restricted wreath product.

LEMMA 2.2. Let G be the (standard) unrestricted wreath product of group
K and H. For a subgroup L of K, let D(L) be the subgroup of G such that

D)= {(en,f)| f: H>K is a constant function taking values in L}.
Then

(1) Co(H)=Z(H)D(K), and

@ Z(G)=Z(D(K)).

In particular, if G is the restricted wreath product of K and H, and |H|
is infinite, then Z(G) is trivial.

Proof. (1) Let (&, f)=Cg(H). Then
(&, f ) (h' ep) = (k’ ep) = (ﬁ’ er) & f )
for all #¥=H Thus we have AR =Kk and F(Wh)=f(k) for all ¥ €H.
Hence h&Z(H) and f is constant on H. This implies C;(H)=Z(H)D(K).
The converse argument is also valid.

@ I (b,f)€Z(G), then (b, F) W, f")=@,f") (b, f) for all (¥,f'YEG.
Hence f¥f’=f'#f. In particular, ff’=f"*f for all f’, and f¥=f for all &,
that is, f is a constant function. Suppose that h+ey. Let f(ey)=k€Kk.
Then there exists a function f’ : H—K such that f/(eg)=k"1 and f’ (k)
#k71. For this function f’, (ff") (eg) =ex but (f'2f) (ey) =f" (k) f(en) k&
=eg. Therefore ff’+#f’*f. This contradicts to ff’=f’%f. Hence h=ey,
which implies (&, f)<D(K) and ff’'=f’f for all f’. Therefore, we have

Z(G)=D(K) NCe(F*)=Z(D(K)),
where F*= {(ey,f’) | f’ : H->K function}.

If H is infinite group and G is restricted wreath product of K and H, then
D(K) = {(en, ex)}. Therefore, Z(G)=Z(D(K)) is trivial.
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THEOREM 2.3. Let K and H be groups. Let o : K—KYH be a mapping
defined by a(k)=(ey,fi), where filen)=Fk and fi(k)=ex for all h*tepy.
And let 8: H-K}H be a mapping defined by B(k)={(h,er). Then « and f8
are injective homomorphisms.

Moreover, given any group G and homomorphisms ¢ : K— G and ¢: H— G

such that
Lo(RY®, o(K)¢#]=1
Jor all k, K €H, there exists a unique homomorphism % : K*H—G such that
‘ 7 a=9 and 7 - f=¢.
Proof. 1t is clear that @ and § are injective homomorphisms.
We define a homomorphism 7 from K}H into G by
7((k, f))=¢) L o(f (@)g(=).
Then % is well defined and
1Y, 1)) =n9(RE, F¥f'))=¢(hR') II;[HQD(f"'f'(x))"’“'”

By the definition of the restricted wreath product, there exist only finitely
many z’s, Say Ii,..., %, in H such that f¥f’(z;) #ex. Hence
L)) =SRYSH Yo (FEF! ()9 V0 (FFf (2,)) 905D
= (RS R) (p(f (F'z1))) ¢V (o (f (B 2,)) ) #5a
(p(f" () ))?E Ve (@ (F (2,)) )=
=@ (k) (p(f (B'2,))) ¢ W20V (o f (B 2,)) ) oW 201
P (@ (' (2,))) =P (o (f (24)))¢5~D
=n((h, ))7(H, 1)).
Thus % is a homomorphism.
Next, we will show that 7 - a==¢ and 7 - =¢. In fact, we have
(7 - a) () =n(a®)=1((les f))
=¢(ex) H o(fi{z))? =V =0(k).

Similarly, we have (n-BW= 7}(13(’1)) 7((k, ep) ) =P ().
Finally, we assert the uniqueness of 7. Let 7 : KYH — G be another

homomorphism with 7/ - a=¢ and % - f=¢. Then for each %z in K
(e f)) =1(a(B)) =p&) =7 (a(®)) =7 ((ea, 1)),

and for each 2 in H
7{(h, ex)) =7 ((k, er)).
Also, for a given (&, f)EK'H, let z; be the finitely many elements-of H
such that f(z;) =k, k;#ex and let f; : H— K be defined by f;(z;)=F; and -
filz)=ex for all zEH, z+#z; Then f=fi--f, and
(h’f) = (h9 eF) (eHaf) = (ha eF) (eH:fl) e (eHafn)'
Since (em, fi) = (z;, f3,) (@7, er) = (z;, er) (en, [ k) (7% ep) for each i=1, ..., n,
we have 7((&,f))=17 ((& f)). Hence 7/ =n.
Thus the theorem is proved.
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3. Schur-Zassenhaus Theorem

In this section, we will give a new proof of Schur-Zassenhaus theorem.
To do this, we need the following well-known theorem(cf [50D. '

THEOREM 3. 1. (Kaloujnine and Krasner). Let G be a group with a nor'.r;zél
subgroup N. Set H=G/[N. Then G is isomorphic to a subgroup of the stan-
dard unrestricted wreath product of N and H.

THEOREM 3. 2. (Schur-Zassenhaus). Let G be a ﬁmte group, and let N be
a normal abelian Hall subgroup of G. Then

(1) If K is a complement of N in G, and L is a subgroup of G such that
G=NL, then c"*KcC L for some cEN. In particular, if L is also a complement
of N in G, then L is conjugate to K in G.

(2) There exists a subgroup K of G such that G=NK and NN K=1.

Proof. The proof of (1) is given in [1], but we include it here for the

completeness. Here, we put
[N|=m and |G: N|=|K|=n.

First, consider the case NN L=1. Then K and L are complete sets of
coset representatives for N in G, and so there is an isomorphism ¢ on K
onto L such that zN=¢(z) N for all zEK. Because N is an abelian group,
and z7lp(z) €N for all z€K, the product = HK zlp(z) is a well-defined

element of N. Since N is a normal subgroup, therefore, for each yEK,

™ y“‘by=¢l;lx{ (z3) o (zy)p(¥) "y}
= {QK (zy) o (zx)} {p(») )" =b {go (y) 13} 7,

because xy runs through K as z runs through XK.

Since N is a Hall subgroup, m is relatively prime to » and so mst+az=1
for some integers s and . Thus for each a&N, a*=al™™=q - g =g,
And from (*) we get s
| ¥y Wy=(y " by)* =¥ {o(y) A} ~=b'p(3)y.

Hence b“yb‘——qo(y) for all yeK, and so ¢ 'Kc=L with c=>btcN. This
proves (1) for this special case. ' N

In the general case, N;=NNL is normal in L (because N is normal
in G), and N, is normal in N (because N is abelian), and so N, is normal
in NL=G. The normal abelian Hall subgroup N/N; of G/N; has two
complements KN;/N; and L/N; in G/N;. By the result proved above,
¢ 1KNi¢/Ny=L/N; for some cEN, and so ¢KcCcKN;c=L. Thus the
assertion (1) holds.
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We now prove (2) by using the conjugacy property (1). By Theorem 3.1,
G is isomorphic to a subgroup of NvG/N=G, under the isomorphism &,
which was defined in the proof of Theorem 3.1. By Lemma 2.1, G,
contains a normal subgroup

F*={(N,f)|f: G/N— N}
and a subgroup

H*={(gn, er)lgn€EG/N}=G/N
such that G;=F*H* and F*NH*= {(N, ep)}.

We then note that the following hold:

(1) F*NO(G)=0(N).

(ii) F* is a normal abelian subgroup of G,.

(iii) |G, : F*|=|G: N|=10(G) : O(N) |=10(G) : 6(G) NF*|, and

|F*|=|N|=
Thus F* is a Hall subgroup of G,.

(iv) H* is a complement of F* in G,.

(v) F*(G)=G,.

Because of (i), (iii) and (iv), we may apply (1) to the group G; to
conclude that e 1H*cc@(G) for some ccF*. Then ¢'H*c is clearly a com-
plement of (N) in 0(G). Since @ is an isomorphism of G onto 6(G),
it follows that N has a complement in G.

Thus we have completed the proof of Theorem 3. 2.
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