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ON THE SEQUENCE SPACES Ces(p.)..0<p<1

By Kwanc Ho SHon

§1. Introduction

Let S denotes the linear space of all infinite sequences z= {z,} of complex
numbers over complex field. For a sequence {p,} of real numbers with
0<p,<1 for all n, we define the sequence space

Ces(p) =tz ¢l €5, sup{(L5 |zl )"} <oo}
with a metric defined by
& (#n) (2, 9) = sgp{(%éllxk—yﬂ)p"}-
We write v(p,) for the topology on Ces(p,).. induced by the metric o (p,).
If p,=1 for all », we write Ces(o) for Ces(1)., v(c0) for v(1).

In this paper we investigate the extent to which author’s paper [4] for
Cesdro sequence spaces (Ces(p),u(p)), 1<p<co, have analogues for the
sequence spaces (Ces(p,)., v(®n)), 0<p. <1

82. Properties of Ces(p,)., 0<p,<1

In this section we investigate some relationships between the Ces(#,)., sp-
aces.

LeMMA 2.1. (Ces(p,) .., v(p,)) is a complete metric additive topological
group, and for a fized scalar A, the function x—>Ax is continuous. Moreover,
the function (A, x) ——Ax is continuous at (A, x)=1(0,0).

Proof. We first show that (Ces(p,).., 2(#,)) is a complete metric additive
tOpOlOglC&l group; if {xn}’ {yn}‘ ECes (Pn) o9 then

n P” bed n pﬂ
(L2 im+nl) " <(LE 10l + LB )
=1 k=1 k=1

n

<(LZE1ml) "+ (L 11)™

ni=

Hence it follows that
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@D su|(LZ1atnl)"

np=

n ' n P"
<sup{(3 B 1sl)" +ow{(FE 1)} <
This shows that {z,} + {y.} €Ces(p,).. Hence (Ces(p,)., +) is a group.

It is immediate from the definition of ¢(p,) and (2.1) that ¢(p,) is a
metric on Ces(p,)... The continuity of the addition follows from the ine-
quality; for z, y, s, tECes(p,)

0 (p,) (z+3, s+8) <o (p,) (2, 5)+0 (pa) (3, 8).

We have shown that (Ces(p,).,v(p,)) is a metric additive topological
group.

Now we will show that (Ces(#,)., v(#,)) is complete. Let {z™} =, be a
Cauchy sequence in Ces(p,)., with respect to o(p,). We first show that for
each &, {z;} =, is a Cauchy sequence in the set of all complex numbers
C. To show this, let % be fixed and £>0. Choose a positive integer N, such
that 2<N,. Since {z**} 3, is Cauchy in Ces(p,)., there exists ny such that
if n,m>n, then

& (px) (@, zm) <'(7v~‘:;)"ﬂ°

= 5P K%f,él‘ W —z, ™ \)pN} < (—;—E—YN"

1 W o | \ PN /(_5_>PN0
:_‘:)(NMZ::II-Tk z l) <\~

Neg
= Lln"—n®|<le

= |2; P —x;| < ¢ for each 1<k< N,.

Since % is arbitrary, it follows that for each &, {z;?} 2, is a Cauchy seque-
nce in C. Hence for each £, lim 2, exists. Thus if lim z,*’=z,, then

we obtain a sequence {zg il.
Now we show that {z;} €Ces(p,).. Since {z;}2,; is Cauchy, for given
>0, there exists a positive integer ny such that for z, m>n, we have

N
ﬁz |2 — 2, | <e for each N.
k=1
Letting m——>c0, we obtain

N .
NIl a®—z| <& for each N (n>n0).
=1
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Hence we have
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for each N, and hence
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This means that {z;} €Ces(p,)., so that (Ces(p,).,0(#.)) is complete.
Next we show that the function z——>1z is continuous for each fixed A4;
for arbitrary ¢>0, if

o (pn) (z, 0) <m,

then from the inequality
g (Az, Ay) <max {1, |2 } o (z, ),
it follows that
0 (pa) (Az, 0) <max {1, |2}} o (#,) (£, 0) < &

This means that if 1 is fixed, then the function z——Az is continuous at z
=0, and hence continous at any z.

Finally we show that the function (1, z) —>Az is continuous at (4, z)=
(0,0); for arbitrary £>0, if |1]<<1 and & (p,) (z, 0)<le, then

0 (ps) (2, 0) <max {1, |1} o (p,) (2, 0) <e.
This means that the function (1, x) ——Az is continuous at (0, 0).

REMARK 2.2. If z={z,} €Ces(p,).. and 2€C, then
1y P _ (2] 55 2
(zE1al) < (B E 1)

<max {1, 141} (L £ 121)"
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Hence we have
sup {(L £ 1241 )} <max (1, 121} sup {( L 2 12l )} <0,

This shows that Az=Ces(p,)... Therefore, it follows from Lemma 2.1 that
Ces(p,) . is a linear space over C. However, for fixed z, the map i— iz
is not, in general, contiuuous at A=0. Hence (Ces(p,)., v(p,)) is not, in
general, a linear topological space.

PrOPOSITION 2.3. If 0<p,<q,<1 for all n, then
Ces{(q,) .. ECes(p,) ..
Proof. If {z,} €Ces(g,)., then there exists M>1 such that

<“‘1 Zﬂ lxkl)qﬂgM for all n.
7 p=1
Hen’c\e it follows that
(li lxkl)P"<M for all n
np=1

Therefore, {z,} €Ces(p,)., and hence the result follows.
COROLLARY 2. 4. Suppose that 0<r,, 5,<1 for all n, and we write
p=min{r,, s,} and q,=max {r,, s,}.
Then
(1) Ces(gy)..=Ces(rn) . UCes(ss)., and .
(2) Ces(p,)..=H, where H is the subspace of S generated by Ces(r,).N
Ces(s,) e

Proof. (1) It follows from Proposition 2.3 that Ces(g,)."Ces(r,).. and
Ces(q,) .CCes(s,) ... Hence we have Ces(g,) .CCes(r,) .. NCes(s,) ...
Conversely, if {z,} €Ces(r,)..NCes(s,)., it follow from the inequality

|A{<max {|A]7s, | 4]}

that for any », we have

Thus it follows that

wp{ (G )"} <sup {2l ) oG Bl ) <o
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Hence {z,} €Ces(q,)., and therefore,
Ces(r,) . NCes(s,) .= Ces(q,)..

(2): Since Ces(rp),=Ces(p,).. and Ces(s,). ©Ces(p,)., we have
Ces(r,) .U Ces(s,) ., =Ces(p,) ... Hence it follows that H=Ces(p,)..
To show the reverse inclusion, let

A={n:r,=s,} and B={n:r,<s,}.

If {z,} €Ces(p,)., we write

v z, if n€A 0 if n€A
Vo= and z,=

0 if »neB

then we can show that

z, if n€eB

o310 <ppl i) <=

and hence
{9a) €Ces(s,) .CH, {2} ECes(ra).<H.
Therefore, {z,} = {y,} + {z,} €H. This proves that Ces(p,).—H.
We write U for the set {z:2€Ces(p,)., 0(p,) (2,0)<1}. It is clear
that z€ U if and only if —;];Z:Jxl,l <1 for all ».
LiMMA 2.5. 1f 0<p,<q.<1 for all n, then the set Ces(q,)., is" closed in_

(Ces(pp) o» v(pn)). Consequently, Ces(p,).= Ces(qn).. if and only if Ces(g,)..
is dense in (Ces(pn) o v(Pn)).

Proof. Suppose y&Ces(g,)., and z&Ces(p,).-Ces(g,).. Then it is clear
that z—y&Ces(g,)..>U. Hence it follows that

o (60) (@) =sup{(LE I m—nl )| >1

This shows that z can not be a limit point of Ces(g,).. Hence the result
follows.

§3. Main results

In this section we give several equivalent conditions on Ces(p,).. to be a
topological linear space.
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THEOREM 3.1. If 0<p,<q,<1 for all n, then the following three state-
ments are equivalent:

(1) v(g,) is the topology induced on Ces(q,). by v(pn).

(2) The identity map (Ces(q,) ., v(ga))—>(Ces(q,) ., v(p,)) is continuous.

(3) There exists P>>1 such that Pp,>=gq, for all n.

Proof. (1) =>(2): Since v(g,) is the topology induced on Ces(g,). by
v(p,), it follows that every GE€v(g,) is of the form G=Ces(g,)..NV for
some VEv(p,). This implies that the identity map is continuous.

(2) =>(3): Suppose that (3) is not true; then there exists a sequence

2(1) <n(2)<--- such that g, <_1%7—Qn(N) (N=12, ).
We write

-1
xN=n(N) -2 B0 - €a(ND (N=17 2’ ".)-

Then we have
7(8) (@, 0) = (ka0 2770 )0 =L,
and

a(qn) (xN, 0) TL(N) 2 P'(N) )qmm

( (N)
< (27 )Nty =27V,

This shows that the identity map is not continuous at 0. Hence (3) follows.

(3) =>(1): For every >0, let §=min {1, é—}.

Then s:lp{(-}‘—éllzkl) } < d implies sup{~‘Z. kal) } —g—<
This shows that
{reCes(gn) .. : 0 (ps) (z, 0) <}

C {z€Ces(gn) . : (g, (z, 0) <e}.
This follows that v(g,) v (p,.) NCes{g,)..

To show the reverse inclusion, for given ¢>0, let §=min {1, (—5—)?},
then s:lp{( Zly l) }<B implies sup{(—}l—éliykkY'} <%< &
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This shows that
{y€Ces(ga) .. : 7 (gs) (3, 0) <5}

< {y€Ces(qn) . : (22 (3, 0)<e}.

Hence v(p,) NCes(q,) .. “v(gs). Therefore it follows that the topologies they
define are idendical. Hence (1) follows.

COROLLARY 3.2. Let {p,} and {q be sequences of real numbers such that
P2<qn for all n. Then tkere exists P>1 such that Pp,=q, for all n if and
only if (Ces(Pn)ws v(Pa)) = (Ces(ga) s v (a4))-

Proof. (=>): If z=Ces(p,).. then there exists M>1 such that
anl( 2 <
This follows that

(Lﬁ]xgl)p'gM for all »

n p=1

and hence

(Lz’nm)”‘sw for all 2.
” ;=1

Therefore, (—%:é‘llzkl)q'gMP for all #, so that xE€Ces(g,).. This shows that

Ces(p,)..CCes(q,) ... Hence it follows from Proposition 2. 3, and Theorem 3. 1
((3) implies (1)) that (Ces(pa).. v(n))=(Ces(gs) o v(ga))-
(&=): The proof follows from Theorem 3.1 ((1) implies (3)).

THEOREM 3.3 The following four statements on {p, are equivalent:
(1) v(o0) is the topology induced on Ces (o0) by v(p,).-
(2) The identity map (Ces(0), v(o0))—>(Ces(ce), v(p,)) is continuous.
(3) inf p,>0.
(4) (Ces(pa)o, v(pn)) is a linear tepological space.

Proof. The equivalence of (1)~(3) follows from Theorem 3.1 with
g,=1 for all n.
3= @): If infp,=p>0, then we have

o (Az, 0) <max{|d], |2|" o (z,0).
For every >0, let 6 such that 0<5<min{1, (GT.:T)) %}. Then |1]<<d

implies
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oz, 0) <max{|al, 2]} o (z,0)
=|2lta(z, 0) < &%5(z, 0)

e \Lyv
<((z @ o‘)f')’) o (@ 0)=c.

This shows that the function 2——>Az is continuous at A=0 for évery fixed
z, and hence continuous everywhere. It follows from Lemma 2.1 and Re-
mark 2.2 that (Ces($.)., v(#,)) is a linear topological space. . .

@)= (): If (3) is not true, then p,=0 and z,=1 for all . Hence g (iz,
0) =1 for all 2 with 0<JA|<1. Thus Az——0 as —>0. This shows that
(Ces(pn) ., v(pn)) is not a linear topological space. Hence (4) implies (3).
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