ON THE SEQUENCE SPACES $Ces(p_n)_{\infty}$, 0

By KWANG HO SHON

§ 1. Introduction

Let S denotes the linear space of all infinite sequences $x = \{x_n\}$ of complex numbers over complex field. For a sequence $\{p_n\}$ of real numbers with $0 < p_n \le 1$ for all n, we define the sequence space

$$Ces(p_n)_{\infty} = \{ \{x_n\} : \{x_n\} \in S, \sup \{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^{p_n} \} < \infty \}$$

with a metric defined by

$$\sigma(p_n)(x, y) = \sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_k - y_k| \right)^{p_n} \right\}.$$

We write $v(p_n)$ for the topology on $Ces(p_n)_{\infty}$ induced by the metric $\sigma(p_n)$. If $p_n=1$ for all n, we write $Ces(\infty)$ for $Ces(1)_{\infty}$, $v(\infty)$ for v(1).

In this paper we investigate the extent to which author's paper [4] for Cesàro sequence spaces (Ces(p), u(p)), $1 , have analogues for the sequence spaces <math>(Ces(p_n)_{\infty}, v(p_n))$, $0 < p_n \le 1$.

§2. Properties of $Ces(p_n)_{\infty}$, $0 < p_n \le 1$

In this section we investigate some relationships between the $Ces(p_n)_{\infty}$ spaces.

LEMMA 2.1. $(Ces(p_n)_{\infty}, v(p_n))$ is a complete metric additive topological group, and for a fixed scalar λ , the function $x \longrightarrow \lambda x$ is continuous. Moreover, the function $(\lambda, x) \longrightarrow \lambda x$ is continuous at $(\lambda, x) = (0, 0)$.

Proof. We first show that $(Ces(p_n)_{\infty}, v(p_n))$ is a complete metric additive topological group; if $\{x_n\}$, $\{y_n\} \in Ces(p_n)_{\infty}$, then

$$\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}+y_{k}|\right)^{p_{n}} \leq \left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|+\frac{1}{n}\sum_{k=1}^{n}|y_{k}|\right)^{p_{n}} \\
\leq \left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{p_{n}}+\left(\frac{1}{n}\sum_{k=1}^{n}|y_{k}|\right)^{p_{n}}.$$

Hence it follows that

(2. 1)
$$\sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_{k} + y_{k}| \right)^{p_{n}} \right\} \\ \leq \sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_{k}| \right)^{p_{n}} \right\} + \sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |y_{k}| \right)^{p_{n}} \right\} < \infty.$$

This shows that $\{x_n\} + \{y_n\} \in Ces(p_n)_{\infty}$. Hence $(Ces(p_n)_{\infty}, +)$ is a group.

It is immediate from the definition of $\sigma(p_n)$ and (2.1) that $\sigma(p_n)$ is a metric on $Ces(p_n)_{\infty}$. The continuity of the addition follows from the inequality; for $x, y, s, t \in Ces(p_n)_{\infty}$

$$\sigma(p_n)(x+y,s+t) \leq \sigma(p_n)(x,s) + \sigma(p_n)(y,t).$$

We have shown that $(Ces(p_n)_{\infty}, v(p_n))$ is a metric additive topological group.

Now we will show that $(Ces(p_n)_{\infty}, v(p_n))$ is complete. Let $\{x^{(n)}\}_{n=1}^{\infty}$ be a Cauchy sequence in $Ces(p_n)_{\infty}$ with respect to $\sigma(p_n)$. We first show that for each k, $\{x_k^{(n)}\}_{n=1}^{\infty}$ is a Cauchy sequence in the set of all complex numbers C. To show this, let k be fixed and $\varepsilon > 0$. Choose a positive integer N_0 such that $k \leq N_0$. Since $\{x^{(n)}\}_{n=1}^{\infty}$ is Cauchy in $Ces(p_n)_{\infty}$, there exists n_0 such that if $n, m \geq n_0$, then

$$\sigma(p_{N})(x^{(n)}, x^{(m)}) < \left(\frac{\varepsilon}{N_{0}}\right)^{p_{N_{0}}}$$

$$\Rightarrow \sup_{N} \left\{ \left(\frac{1}{N} \sum_{k=1}^{N} |x_{k}^{(n)} - x_{k}^{(m)}|\right)^{p_{N}} \right\} < \left(\frac{\varepsilon}{N_{0}}\right)^{p_{N_{0}}}$$

$$\Rightarrow \left(\frac{1}{N_{0}} \sum_{k=1}^{N_{0}} |x_{k}^{(n)} - x_{k}^{(m)}|\right)^{p_{N_{0}}} < \left(\frac{\varepsilon}{N_{0}}\right)^{p_{N_{0}}}$$

$$\Rightarrow \sum_{k=1}^{N_{0}} |x_{k}^{(n)} - x_{k}^{(n)}| < \varepsilon$$

$$\Rightarrow |x_{k}^{(n)} - x_{k}^{(m)}| < \varepsilon \text{ for each } 1 \leq k \leq N_{0}.$$

Since k is arbitrary, it follows that for each k, $\{x_k^{(n)}\}_{n=1}^{\infty}$ is a Cauchy sequence in C. Hence for each k, $\lim_{n\to\infty} x_k^{(n)}$ exists. Thus if $\lim_{n\to\infty} x_k^{(n)} = x_k$, then we obtain a sequence $\{x_k\}_{k=1}^{\infty}$.

Now we show that $\{x_k\} \in Ces(p_n)_{\infty}$. Since $\{x_k^{(n)}\}_{n=1}^{\infty}$ is Cauchy, for given $\varepsilon > 0$, there exists a positive integer n_0 such that for $n, m \ge n_0$, we have

$$\frac{1}{N}\sum_{k=1}^{N}|x_k^{(n)}-x_k^{(m)}|<\varepsilon \text{ for each } N.$$

Letting $m \longrightarrow \infty$, we obtain

$$\frac{1}{N}\sum_{k=1}^{N}|x_k^{(n)}-x_k| \leqslant \varepsilon \text{ for each } N \ (n \geqslant n_0).$$

Hence we have

$$\begin{split} \left(\frac{1}{N}\sum_{k=1}^{N}|x_{k}|\right)^{p_{N}} \\ &= \left(\frac{1}{N}\sum_{k=1}^{N}|x_{k}-x_{k}^{(n)}+x_{k}^{(n)}|\right)^{p_{N}} \\ &\leq \left(\frac{1}{N}\sum_{k=1}^{N}|x_{k}-x_{k}^{(n)}|\right)^{p_{N}} + \left(\frac{1}{N}\sum_{k=1}^{N}|x_{k}^{(n)}|\right)^{p_{N}} \end{split}$$

for each N, and hence

$$\sup_{N} \left\{ \left(\frac{1}{N} \sum_{k=1}^{N} |x_{k}| \right)^{p_{N}} \right\} \\
\leq \sup_{N} \left(\frac{1}{N} \sum_{k=1}^{N} |x_{k} - x_{k}^{(n)}| \right)^{p_{N}} + \sup_{N} \left\{ \left(\frac{1}{N} \sum_{k=1}^{N} |x_{k}^{(n)}| \right)^{p_{N}} \right\} \\
\leq \varepsilon + \sigma(p_{N}) \left(x^{(n)}, 0 \right) \text{ for every } n \geq n_{0}$$

This means that $\{x_k\} \in Ces(p_n)_{\infty}$, so that $(Ces(p_n)_{\infty}, \sigma(p_n))$ is complete. Next we show that the function $x \longrightarrow \lambda x$ is continuous for each fixed λ ; for arbitrary $\varepsilon > 0$, if

$$\sigma(p_n)(x,0) < \frac{\varepsilon}{\max\{1,|\lambda|\}}$$

then from the inequality

$$\sigma(\lambda x, \lambda y) < \max\{1, |\lambda|\} \sigma(x, y),$$

it follows that

$$\sigma(p_n)(\lambda x, 0) < \max\{1, |\lambda|\} \sigma(p_n)(x, 0) < \varepsilon$$
.

This means that if λ is fixed, then the function $x \longrightarrow \lambda x$ is continuous at x = 0, and hence continuous at any x.

Finally we show that the function $(\lambda, x) \longrightarrow \lambda x$ is continuous at $(\lambda, x) = (0, 0)$; for arbitrary $\varepsilon > 0$, if $|\lambda| < 1$ and $\sigma(\rho_n)(x, 0) < \varepsilon$, then

$$\sigma(p_n)(x,0) \leq \max\{1, |\lambda|\} \sigma(p_n)(x,0) \leq \varepsilon$$
.

This means that the function $(\lambda, x) \longrightarrow \lambda x$ is continuous at (0, 0).

REMARK 2.2. If $x = \{x_n\} \in Ces(p_n)_{\infty}$ and $\lambda \in \mathbb{C}$, then

$$\left(\frac{1}{n}\sum_{k=1}^{n}|\lambda x_{k}|\right)^{p_{n}} \leqslant \left(\frac{|\lambda|}{n}\sum_{k=1}^{n}|x_{k}|\right)^{p_{n}}$$

$$\leqslant \max\{1, |\lambda|\}\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{p_{n}}.$$

Hence we have

$$\sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |\lambda x_k| \right)^{p_n} \right\} \leq \max \left\{ 1, |\lambda| \right\} \sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^{p_n} \right\} < \infty.$$

This shows that $\lambda x \in Ces(p_n)_{\infty}$. Therefore, it follows from Lemma 2.1 that $Ces(p_n)_{\infty}$ is a linear space over C. However, for fixed x, the map $\lambda \longrightarrow \lambda x$ is not, in general, continuous at $\lambda=0$. Hence $(Ces(p_n)_{\infty}, v(p_n))$ is not, in general, a linear topological space.

Proposition 2.3. If $0 < p_n \le q_n \le 1$ for all n, then

$$Ces(q_n)_{\infty} \subseteq Ces(p_n)_{\infty}$$
.

Proof. If $\{x_n\} \in Ces(q_n)_{\infty}$, then there exists $M \ge 1$ such that

$$\left(\frac{1}{n}\sum_{k=1}^{n}|x_k|\right)^{q_n} \leq M \text{ for all } n.$$

Hence it follows that

$$\left(\frac{1}{n}\sum_{k=1}^{n}|x_k|\right)^{p_n} \leq M$$
 for all n .

Therefore, $\{x_n\} \in Ces(p_n)_{\infty}$, and hence the result follows.

COROLLARY 2.4. Suppose that $0 < r_n$, $s_n \le 1$ for all n, and we write $p_n = \min\{r_n, s_n\}$ and $q_n = \max\{r_n, s_n\}$.

Then

- (1) $Ces(q_n)_{\infty} = Ces(r_n)_{\infty} \cup Ces(s_n)_{\infty}$, and
- (2) $Ces(p_n)_{\infty} = H$, where H is the subspace of S generated by $Ces(r_n)_{\infty} \cap Ces(s_n)_{\infty}$.

Proof. (1) It follows from Proposition 2.3 that $Ces(q_n)_{\infty} \subset Ces(r_n)_{\infty}$ and $Ces(q_n)_{\infty} \subset Ces(s_n)_{\infty}$. Hence we have $Ces(q_n)_{\infty} \subset Ces(r_n)_{\infty} \cap Ces(s_n)_{\infty}$.

Conversely, if $\{x_n\} \in Ces(r_n)_{\infty} \cap Ces(s_n)_{\infty}$, it follow from the inequality

$$|\lambda|^{q_n} \leq \max\{|\lambda|^{r_n}, |\lambda|^{s_n}\}$$

that for any n, we have

$$\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{q_{n}} \leq \max\left\{\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{r_{n}}, \left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{s_{n}}\right\} \\
\leq \left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{r_{n}} + \left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{s_{n}}.$$

Thus it follows that

$$\sup_{n}\left\{\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{q_{n}}\right\} \leq \sup_{n}\left\{\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{r_{n}}\right\} + \sup_{n}\left\{\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{s_{n}}\right\} < \infty.$$

Hence $\{x_n\} \in Ces(q_n)_{\infty}$, and therefore,

$$Ces(r_n)_{\infty} \cap Ces(s_n)_{\infty} \subset Ces(q_n)_{\infty}$$

(2): Since $Ces(r_n)_{\infty} \subset Ces(p_n)_{\infty}$ and $Ces(s_n)_{\infty} \subset Ces(p_n)_{\infty}$, we have $Ces(r_n)_{\infty} \cup Ces(s_n)_{\infty} \subset Ces(p_n)_{\infty}$. Hence it follows that $H \subset Ces(p_n)_{\infty}$. To show the reverse inclusion, let

$$A = \{n : r_n \geqslant s_n\} \text{ and } B = \{n : r_n < s_n\}.$$

If $\{x_n\} \in Ces(p_n)_{\infty}$, we write

$$y_n = \begin{cases} x_n & \text{if } n \in A \\ 0 & \text{if } n \in B \end{cases} \quad \text{and} \quad z_n = \begin{cases} 0 & \text{if } n \in A \\ x_n & \text{if } n \in B \end{cases}$$

then we can show that

$$\sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |y_{k}| \right)^{s_{n}} \right\} \leq \sup_{n \in A} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_{k}| \right)^{p_{n}} \right\} < \infty,$$

$$\sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |z_{k}| \right)^{r_{n}} \right\} \leq \sup_{n \in B} \left\{ \frac{1}{n} \sum_{k=1}^{n} |x_{k}| \right)^{p_{n}} \right\} < \infty$$

and hence

$$\{y_n\} \in Ces(s_n)_{\infty} \subset H, \{z_n\} \in Ces(r_n)_{\infty} \subset H.$$

Therefore, $\{x_n\} = \{y_n\} + \{z_n\} \in H$. This proves that $Ces(p_n)_{\infty} \subset H$.

We write U for the set $\{x: x \in Ces(p_n)_{\alpha}, \sigma(p_n)(x, 0) \le 1\}$. It is clear that $x \in U$ if and only if $\frac{1}{n} \sum_{k=1}^{n} |x_k| \le 1$ for all n.

LLMMA 2.5. If $0 < p_n \le q_n \le 1$ for all n, then the set [Ces $(q_n)_{\infty}$ is closed in $(Ces(p_n)_{\infty}, v(p_n))$. Consequently, $Ces(p_n)_{\infty} = Ces(q_n)_{\infty}$ if and only if $Ces(q_n)_{\infty}$ is dense in $(Ces(p_n)_{\infty}, v(p_n))$.

Proof. Suppose $y \in Ces(q_n)_{\infty}$ and $x \in Ces(p_n)_{\infty}$ - $Ces(q_n)_{\infty}$ Then it is clear that $x-y \notin Ces(q_n)_{\infty} \supset U$. Hence it follows that

$$\sigma(p_n)(x, y) = \sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_k - y_k| \right)^{p_n} \right\} > 1.$$

This shows that x can not be a limit point of $Ces(q_n)_{\infty}$. Hence the result follows.

§ 3. Main results

In this section we give several equivalent conditions on $Ces(p_n)_{\infty}$ to be a topological linear space.

THEOREM 3.1. If $0 < p_n \le q_n \le 1$ for all n, then the following three statements are equivalent:

- (1) $v(q_n)$ is the topology induced on $Ces(q_n)_{\infty}$ by $v(p_n)$.
- (2) The identity map $(Ces(q_n)_{\infty}, v(q_n)) \longrightarrow (Ces(q_n)_{\infty}, v(p_n))$ is continuous.
- (3) There exists P>1 such that $Pp_n \geqslant q_n$ for all n.

Proof. (1) \Longrightarrow (2): Since $v(q_n)$ is the topology induced on $Ces(q_n)_{\infty}$ by $v(p_n)$, it follows that every $G \in v(q_n)$ is of the form $G = Ces(q_n)_{\infty} \cap V$ for some $V \in v(p_n)$. This implies that the identity map is continuous.

(2) \Longrightarrow (3): Suppose that (3) is not true; then there exists a sequence $n(1) < n(2) < \cdots$ such that $p_{n(N)} < \frac{1}{N} q_{n(N)}$ $(N=1, 2, \cdots)$.

We write

$$x^{N} = n(N) \cdot 2^{-\frac{1}{p_{\pi(N)}}} \cdot e_{n(N)} \ (N=1, 2, \cdots).$$

Then we have

$$\sigma(p_n)(x^N, 0) = \left(\frac{1}{n(N)} \cdot n(N) \cdot 2^{-\frac{1}{p_{\pi(N)}}}\right)^{p_{\pi(N)}} = \frac{1}{2},$$

and

$$\sigma(q_n)(x^N, 0) = \left(\frac{1}{n(N)} \cdot n(N) \cdot 2^{-\frac{1}{p_{n(N)}}}\right)^{q_{n(N)}}$$

$$\leq \left(2^{-\frac{1}{p_{n(N)}}}\right)^{N} p_{n(N)} = 2^{-N}.$$

This shows that the identity map is not continuous at 0. Hence (3) follows.

(3)
$$\Longrightarrow$$
 (1): For every $\varepsilon > 0$, let $\delta = \min \left\{ 1, \frac{\varepsilon}{2} \right\}$.

Then
$$\sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^{p_n} \right\} < \delta$$
 implies $\sup_{n} \left\{ \frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^{q_n} \right\} \leq \frac{\varepsilon}{2} < \varepsilon$.

This shows that

$$\{x \in Ces(q_n)_{\infty} : \sigma(p_n)(x, 0) < \delta\}$$

$$\subset \{x \in Ces(q_n)_{\infty} : \sigma(q_n)(x, 0) < \varepsilon\}.$$

This follows that $v(q_n) \subset v(p_n) \cap Ces(q_n)_{\infty}$.

To show the reverse inclusion, for given $\varepsilon > 0$, let $\delta = \min\left\{1, \left(\frac{\varepsilon}{2}\right)^p\right\}$, then $\sup_{n}\left\{\left(\frac{1}{n}\sum_{k=1}^{n}|y_k|\right)^{q_n}\right\} < \delta$ implies $\sup_{n}\left\{\left(\frac{1}{n}\sum_{k=1}^{n}|y_k|\right)^{p_n}\right\} \leq \frac{\varepsilon}{2} < \varepsilon$.

This shows that

$$\{y \in Ces(q_n)_{\infty} : \sigma(q_n) (y, 0) < \delta\}$$

$$\subset \{y \in Ces(q_n)_{\infty} : \sigma(p_n) (y, 0) < \varepsilon\}.$$

Hence $v(p_n) \cap Ces(q_n) \subset v(q_n)$. Therefore it follows that the topologies they define are idendical. Hence (1) follows.

COROLLARY 3.2. Let $\{p_n\}$ and $\{q_n\}$ be sequences of real numbers such that $p_n \leq q_n$ for all n. Then there exists P > 1 such that $Pp_n \geq q_n$ for all n if and only if $(Ces(p_n)_{\infty}, v(p_n)) = (Ces(q_n)_{\infty}, v(q_n))$.

Proof. (\Longrightarrow) : If $x \in Ces(p_n)_{\infty}$ then there exists $M \ge 1$ such that

$$\sup_{n} \left\{ \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^{p_n} \right\} \leqslant M.$$

This follows that

$$\left(\frac{1}{n}\sum_{k=1}^{n}|x_k|\right)^{p_n} \leq M$$
 for all n

and hence

$$\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{Pp_{n}} \leq M^{P}$$
 for all n .

Therefore, $\left(\frac{1}{n}\sum_{k=1}^{n}|x_{k}|\right)^{q_{n}} \leq M^{p}$ for all n, so that $x \in Ces(q_{n})_{\infty}$. This shows that $Ces(p_{n})_{\infty} \subset Ces(q_{n})_{\infty}$. Hence it follows from Proposition 2.3, and Theorem 3.1 ((3) implies (1)) that $(Ces(p_{n})_{\infty} \ v(p_{n})) = (Ces(q_{n})_{\infty}, \ v(q_{n}))$.

(⇐=): The proof follows from Theorem 3.1 ((1) implies (3)).

THEOREM 3.3 The following four statements on $\{p_n\}$ are equivalent:

- (1) $v(\infty)$ is the topology induced on Ces (∞) by $v(p_n)$.
 - (2) The identity map $(Ces(\infty), v(\infty)) \longrightarrow (Ces(\infty), v(p_n))$ is continuous.
 - (3) inf $p_n > 0$.
 - (4) $(Ces(p_n)_{\infty}, v(p_n))$ is a linear topological space.

Proof. The equivalence of $(1)\sim(3)$ follows from Theorem 3.1 with $q_n=1$ for all n.

(3) \Longrightarrow (4): If $\inf p_n = p > 0$, then we have

$$\sigma(\lambda x, 0) \leq \max\{|\lambda|, |\lambda|^p\} \sigma(x, 0).$$

For every $\varepsilon > 0$, let δ such that $0 < \delta < \min \left\{ 1, \left(\frac{\varepsilon}{\sigma(x, \theta)} \right)^{\frac{1}{\rho}} \right\}$. Then $|\lambda| < \delta$ implies

$$\sigma(\lambda x, 0) \leq \max\{|\lambda|, |\lambda|^{p}\} \sigma(x, 0)$$

$$= |\lambda|^{p} \sigma(x, 0) < \delta^{p} \sigma(x, 0)$$

$$< \left(\left(\frac{\varepsilon}{\sigma(x, 0)} \right)^{\frac{1}{p}} \right)^{p} \sigma(x, 0) = \varepsilon.$$

This shows that the function $\lambda \longrightarrow \lambda x$ is continuous at $\lambda=0$ for every fixed x, and hence continuous everywhere. It follows from Lemma 2.1 and Remark 2.2 that $(Ces(p_n)_\infty, v(p_n))$ is a linear topological space.

(4) \Longrightarrow (3): If (3) is not true, then $p_n=0$ and $x_n=1$ for all n. Hence $\sigma(\lambda x, 0)=1$ for all λ with $0<|\lambda|\leq 1$. Thus $\lambda x \longrightarrow 0$ as $\lambda \longrightarrow 0$. This shows that $(Ces(p_n)_{\infty}, v(p_n))$ is not a linear topological space. Hence (4) implies (3).

References

- C. M. Leibowitz, A note on the Cesàro Sequence Spaces, Tamkang J. of Math. 2 (1971), 151-157.
- 2. Jau-shyong Shiue, On the Cesàro Sequence Spaces, Tamkang J. of Math. 1(1970), 19-25.
- J. L. Kelley, I. Namioka, Linear Topological Spaces, D. Van Nostrand Co., New York, 1963.
- 4. Kwang Ho Shon, On the Cesàro Sequence Spaces, Ulsan Institute of Technology Report 11 (1980).
- 5. R. B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.
- 6. S. Simons, The Sequence Spaces $l(p_v)$ and $M(p_v)$, Proc. London Math. Soc. (3) 15(1965), 426-436.

Ulsan Institute of Technology