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AN ELEMENTARY PROOF OF SERRE'S CONJECTURE
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1. Introduction

In this paper, we give an elementary proof of the Serre's Conjecture: If
k is a field, is every projective k[Xb ••• , XnJ-module free? In 1955, this
question was asked by J-p Serre[4]. In 1957, Serre[5J proved that every
finitely generated projective A=k[Xb .•• , XnJ module must be stably free, i
e., PEBAT=N for suitable natural number rand s. (M R. Gabel Cl] has
shownthat if P is not finitely generated, then P is actually free, therefore
we restrict P to be a finitely generated k[Xb ••• , XnJ module). In terms of
algebraic K-theory this means that Ko(k[Xb ••• , XnJ) =Z. [8]. In view of
this, Serre's problem becomes the following: does "stably free" imply free
over A=k[Xb •.. , XnJ?

If n=l, then k[XJ is a principal ideal domain, so projective k[XJ-mo­
dules are free. In 1958, Seshadri [6J proved that if R is a principal ideal
domain, then every finitely generated projective R[XJ-modules are free. In
particular, R=k[XJ gives an affirmative answer to Serre's problem when n
=1 or 2.

There was much interest in this problem for k~3; indeed it was one of
the main reasons for the development of algebraic K-theory. Remarkably,
the problem was solved simultaneously in January 1976, by Quillen [2J in
the United States and Suslin [7J in the Soviet Union.

The basic idea of our elementary proof is due to Lam [lJ, Quillen [2J,
Rotman [3J, Suslin [7J and Swan [8J. All rings are supposed to be com­
mutative with identity and all modules unitary. We have given much effort
for this paper to be as selfcontained and readable as possible.

2. Preliminary results

DEFINITION 1. Let A be a ring and M a A-module. Then mEM is uni­
modular if there is a A-homomorphism f : M~A such that f(m) =1-

REMARKS. It. it;! <;!I;lar that mE},If it;! 1J.nimodular if and only if m is a base
for a free direct summand of M.

*) Supported by the Ministry of Education Research Fund, 1979-80
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Let a= (a;) EA" for some n~1. Then a is unimodular if and only if
"there exists b= (b;) EA" such that I;a;b;=1. In this case we say that (a;)
;=1

is a unimodular column over A.

DEFINITION 2. Let A be a ring. A is said to be a Hermite ring if any
unimodular column over A can be completed to an invertible matrix.

Let F be a free module over a ring A with finite basis {eh ..., ell} . If a
E F is unimodular then there is a finitely generated projective A-module P
such that

PEBAa=F=A".

We can ask whether P=A,,-l holds.

PROPOSITION 3. Let P and a be as above. Then P=A,,-l if and only if
there exists an A-module automorphism h: F-F such that heel) =a.

Proof. Given an automorphism h : F - F such that h (el) = a, we have
the following commutative diagram:

O~Ael~F~F/Ael~

hlAell h1 1
O~Aa~F~F/Aa~

where the two left-side hand maps are isomorphisms, and so by the 5-lemma,
the left hand-side map is an isomorphism. Hence

P=FjAa=FjAel=A,,-I.

The converse is clear.

The proposition can be written in matrix terms as follows: Let

"a=I:a;e;
£=1

Then P=A,,-l if and only if the unimodular column (a£) can be extended
to an invertible nXn matrix C. For, given C= (c;j) EGL(r. A) such that
aj=cil for i=1, ..., n, i. e., (aj) =CEh where El denotes the column vector
having first coordinate 1 and 0's elsewhere. Now let h be the corresponding
automorphism of the matrix C. Then

heel) = I:7=lCilej= I:7=lajej=a.

Therefore P=A,,-l by Proposition 3. The converse is clear.

THEOREM 4. Let A be a Hermite ring. Then every stably free A-module
'"is free.
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Proof. Let P be a stably free A-module. Then there exist free A-mo­
dules G and F such that

P@G=F, G::=Ar, F::=As

for some r, $ ~ 1. We prove this by induction on r and so it suffices to pro­
ve the case r=1. But if r= 1, it follows from Proposition 3 that P is:
free, since A is a Hermite ring.

LEMMA 5. Let A be a ring. Consider polynomials in A[X]

f(x) =Xs+a1Xs-l+ +as

g(x) = b1XS-l+ +bs

Then, for each j, l~j~s, the ideal (f(x) , g(x)) in A[X] contains (4 pot
ynomial of degree s-1 and leading coefficients bj •

Proof. Define

1= {leading coefficients of those hex) E Cf, g) having degree~s-l}.

Then I is clearly an ideal in A containing bl . We prove by induction on j
where I contains bI> "', bj , j ~ s. Define

g'(x) =Xg(X) -bIf(X) = L:: (bi+1-b1ai) Xs-i

By induction, I contains the first j -1 coefficients of g' (X). the last of
which is bj-b1aj-l' It follows that bjE!.

3. Main results

THEOREM 6. Let R be a local ring, A=R[X] and let

a=(ai) EA"

be a unimodular column. If some ai is monic, then a is the first column of
an invertible matrix over R[X].

Proof· If n=l or 2, the theorem holds for any commutative ring R. For,
let

such that a1b1+a:JJ2=1, then

(:~ -::)(:~ -::) = (:~ -::)(:~ ::) = (~ ~).
Therefore we may assume n~3. We do an induction on $, the degree of the
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monic polynomial ai' By the elementary row operations we may assume al

is monic of degree s>O and the other polynomials all, ... , an have degrees
<s-l. Let 'lrl be the maximal ideal in R. Thus 'lrlA consists of those poly­
nomials each of whose coefficients lies in 'lrl. The column aEAn/91lAn is uni­
modular over (R/f'({{,) [X], so that not all ai, i~2 lies in mA. Now assume
a2E$'lrlA. Thus, a2=r1Xs-l+ ...+r" and some rjft-'lrl. Since R is a local ring,
rj is a unit. By Lemma 3, the ideal (a!> a2) in A contains a manic polyno­
mial of degree ~ s-1, so that the elementary row operation of adding a
linear combination of al and az to as produces a monic polynomial of degree
~s-l by Lemma 5.

One may now apply the inductive hypothesis.

LEMMA 7. Let R bea domain, A = R[X] and let

£l(X) = (ai(X)) EAn

be a unimodular column, one of whose coordinate is monic. Then
a(X) =M(X)a(O) for some M(X) EGL(n, A).

Proof. Define

1= {sER : u=:.u' (mod sA) => a (u)"-'a (u')} ,

where £l"-'j3 means that a and j3 are conjugate under the left multiplicative
action of GL(n, A).

Then I is an ideal in R: Let b, b' E I and r, r' E R. If u, u' E A such that
u-u'=(rb+r'b')a for some aEA then u-rba=u'+r'b'a. Thus

£l(u) "-'a (u-rba) =£l(u'+r'b'a) "-'a (u).

Therefore I is an ideal in R.
Suppose I is the unit ideal, i. e., 1=R, then for any u, u' E A, we have

a(u) "-'a(u'). Therefore we have £l(X)"-'£l(O), i. e., a(X) =M(X)£l(O) for
some M(X) EGL(n, A).

We want prove that the ideal I is the unit ideal. Suppose on the contrary
I is a proper ideal in R, so that le J for some maximal ideal J. Since R
is a domain, R is contained in the localization RJ • As R J is local ring and
£l(X) ERJ[XJn is unimodular column one of whose coordinate is monic, so
that by Theorem 6, we have

a(X) =M(X)Cl

for some
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Adjoin a new indeterminate Y to RJ[X] and define a matrix

N(X, Y) =M(X) [M(X+ y)]-1EGL(n, RJ[X, Y]).

(The matrix M(X+ Y) is obtained from M(X) by replacing each of its
polynomial entries mij(X) by mj/X+ Y). If M(X) -1= (hu(X», then it is
easy to see that (hij(X+ Y» is the inverse of M(X+ Y». Observe that the
definition of N(X, Y) gives N(Y, 0) =In, the nXn identity matrix. Since
a(X) =M(X)Ch it follows that a(X+ Y) =M(X+ YCl. Therefore,

(*) N(X, Y)a(X+ Y) =N(X, Y)M(X+ Y)c1=M(X)c1=a(X).

Each entry of N(X, Y) is a polynomial in RJ[X, Y], hence may be written
as f(X) +g(X, Y) where each monomial in g(X, Y) involves a poritive
power of Y. Since N(X, 0) =lm we must have feX) =0 or 1, and we can
conclude that the entries N(X, Y) are polynomials in RJ[X, Y] containing
no nonzero monomials of the form sXj with i>O and sERJ• Let b be the
product of all denominators occuring in coefficients of the polynomial entries
of N(x, y). By definition of RJ> we have bttJ and hence bttI. Further,
N(X, bY) EGL(n, R[X, Y]) for we have just seen that replacing Y by bY
eliminates all denominators. Equation (*) gives

GL(n, R[X, Y])a(X+bY) =GL(n, R[X, Y])a(X).

From this equation it is clear that bE I which is a contradiction.

LEMMA 8 (Noether). Let A=k[Xh ... , XnJ, where k is a field, and let
aEA, m be a natural number greater than the total degree of a. Define

Y=Xn

and, for l~i~n-i define

Then a=ca', where cEk and a' is a monic polynomial over the polynomial
ring key!> ... , Yn- 1].

Proof. Since {Yb ••• , Yn- 1} is a polynomial ring, for the defining equations
the Y's give an automorphism of A (with inverse given by Xn-"Xn and
Xj-"Xj+Xnmn-i for 1~i~n-1). The polynomial a may be wirtten

- ~ X i1 X ij X ina - '" jaj 1 • • • j • . . n ,

so
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'h Y d <' 0+' 1+ +. n-j+ +' n-l)terms Wtt - egree tnm tn-lm ... tjm ... tlm .

Since the integers i ..+i"_lm+ ...+i1m"-1 have different m-adic expansions,
the monomials aiYin+"'+ijmn-l in a will not cancel out each other and if d
is the one with highest degree it will emerge as the leading term in a as a
polynomial in Y.

MAIN THEOREM (Quillen-Suslin). If A=k[Xh ••. , X,,], where k is a field,
then every finitely generated projective A-module is free.

proof. We prove by induction on n. If n=l, A is a principal ideal
domain, therefore the theorem holds. Every finitely generated projective

.A-module is stably free[5]. Therefore it suffices to prove that A is a Hermite
ring by Theorem 4. Let a= (a;) be a unimodular column over A. We may
assume al:;i:O. By Lemma 8, a=ca/ where cEk and a/Ek[Yh ••• , Y ..- 1][Y]
is a monic polynomial (Yi defined as in Lemma 8). Since c is a unit, there
is no loss of generality in assuming al = a/, i e, al is monic. Theorem 7
thus applies to give

a(X) =Ma(O),

where MEGL(n, A) and a(O) is a unimodular column over a ring B=
R[Yh ••• , Y..- 1]. By induction, B is a Hermite ring, so that a (0) =NCl for
some NEGL(n, B). Hence MNEGL(n, A) and a=MNcl'
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