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AN ELEMENTARY PROOF OF SERRE'S CONJECTURE
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1. Introduction

In this paper, we give an elementary proof of the Serre’s Conjecture: If
b is a field, is every projective £[Xj,..., X, |-module free? In 1955, this
question was asked by J-P Serre[4]. In 1957, Serre[5] proved that every
finitely generated projective A=#k[Xj, ..., X, ] module must be stably free, i
e., PDA = As for suitable natural number r and s. (M. R. Gabel [1] has
shownthat if P is not finitely generated, then P is actually free, therefore
we restrict P to be a finitely generated k[ X, ..., X, | module). In terms of
algebraic K-theory this means that K,(#[ X, ..., X, )=Z. [8]. In view of
this, Serre’s problem becomes the following: does “stably free” imply free
over A=K Xy, ..., X, ]?

If n=1, then k[ X is a principal ideal domain, so projective k[ X ]-mo-
dules are free. In 1958, Seshadri [6] proved that if R is a principal ideal
domain, then every finitely generated projective R[ X J-modules are free. In
particular, R=#X] gives an affirmative answer to Serre’s problem when =z
=1 or 2.

There was much interest in this problem for £=3; indeed it was one of
the main reasons for the development of algebraic K-theory. Remarkably,
the problem was solved simultaneously in January 1976, by Quillen [2] in
the United States and Suslin [7] in the Soviet Union.

The basic idea of our elementary proof is due to Lam [17], Quillen [2],
Rotman [3], Suslin [7] and Swan [8]. All rings are supposed to be com-
mutative with identity and all modules unitary. We have given much effort
for this paper to be as selfcontained and readable as possible.

2. Preliminary results

DerFINITION 1. Let A be a ring and M a A-module. Then m&M is uni-
modular if there is a A-homomorphism f : M—A such that f(m)=1.

ReMARKS. It is clear that m& M is unimodular if and only if m is a base
for a free direct summand of M.
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Let a=(a)=A" for some n=1. Then ¢ is unimodular if and only if
there exists b= (§;) € A” such that "Z}aib;=1. In this case we say that (a;)
i=1
is a unimodular column over A.

DEFmITION 2. Let A be a ring. A is said to be a Hermite ring if any
unimodular column over A can be completed to an invertible matrix.

Let F be a free module over a ring A with finite basis {e;,...,e,}. If a
€ F is unimodular then there is a finitely generated projective A-module P
such that

PPAa=F= A"
We can ask whether P=A""! holds.

PROPOSITION 3. Let P and a be as above. Thern P=A*"' if and only if
there exists an A-module automorphism h : F—F such that h(e)) =a.

Proof. Given an automorphism k: F— F such that k(e;) =a, we have
the following commutative diagram:

0—>Aey——>F—>F/ Ae;—0

hIAe1 l hl i

0 Aa—>F—>F/Aa—>0
where the two left-side hand maps are isomorphisms, and so by the 5-lemma,
the left hand-side map is an isomorphism. Hence

P=F/Aa=F/Aey= A1,

The converse is clear.
The proposition can be written in matrix terms as follows: Let

n
a=Xa;e;
i=1

Then P= A1 if and only if the unimodular column (a;) can be extended
to an invertible #Xn matrix C. For, given C={(¢;;) €GL(r, A) such that
a;=c; for i=1,...,n, ie, (a)=Cec, where ¢ denotes the column vector
having first coordinate 1 and 0’s elsewhere. Now let %2 be the corresponding
automorphism of the matrix C. Then

h(e)) = Xiacaei=i-10:0;=a.
Therefore P=A*"! by Proposition 3. The converse is clear.

THEOREM 4. Let A be a Hermite ring. Then every stably free A-module
is free.
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Proof. Let P be a stably free A-module. Then there exist free A-mo-
dules G and F such that

POG=F, G=4r, F=A*

for some r,s=1. We prove this by induction on r and so it suffices to pro-
ve the case r=1. But if r=1, it follows from Proposition 3 that P is
free, since A is a Hermite ring.

LEMMA 5. Let A be a ring. Consider polynomials in A[X )
Fl&) =X+ X571+ ..+ g
glx)= b X714 ...+ b,

Then, for each j, 1=<j=<s, the ideal (f(z), g(x)) in A[ X7 contains a pol
ynomial of degree s—1 and leading coefficients b;.

Proof. Define
I= {leading coeflicients of those k(z) <€ (f, g) having degree<s—1}.

Then I is clearly an ideal in A containing 5,. We prove by induction on j
where I contains by, +-+,b;, j<s. Define

g () =Xg(X) —b:,f (X) =2 (b1 —bra) X°*
By induction, I contains the first j—1 coefficients of g’(X). the last of
which is b;—&,2;-1. It follows that §;=1.
3. Main results
THEOREM 6. Let R be a local ring, A=R[X] and let
a=(a;) € A*

be a unimodular column. If some a; is monic, then & is the first column of
an invertible matrix over R[ X ].

Proof. If n=1 or 2, the theorem holds for any commutative ring R. For,

let

ay [2)

(51> ’ <bz> €4
such that 2;6,+a:6,=1, then

(011 bz) (bl bz) — (bl bz) (01 bg) — (l 0)
az —'bl asz —ay ay —ai] \@z bl O 1/

Therefore we may assume 223. We do an induction on 5, the degree of the
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monic polynomial ¢;, By the elementary row operations we may assume a;
is monic of degree s>>0 and the other polynomials @y, ...,a, have degrees
<s—1. Let % be the maximal ideal in R. Thus %A consists of those poly-
nomials each of whose coefficients lies in #. The column @< A"/MA” is uni-
modular over (R/%) [ X, so that not all q;, i=2 lies in MA. Now assume
a,&MA. Thus, ay=rX*1+...4+r, and some r;&M. Since R is a Jocal ring,
r; is a unit. By Lemma 3, the ideal (a;, a») in A contains a monic polync-
mial of degree <s—1, so that the elementary row operation of adding a
linear combination of 4, and a; to a; produces a monic polynomial of degree
=s—1 by Lemma 5.
One may now apply the inductive hypothesis.

LEMMA 7. Let R bea domain, A=R[ X | and let
a(X)=(a;(X)) A
be a unimodular column, one of whose coordinate is monic. Then
a(X)=M(X)a(Q) for some M(X)<=GL(n, A).
Proof. Define

I={s€R : u=4' (mod sA) > a(w)~a()},

where a~f means that @ and 8 are conjugate under the left multiplicative
action of GL(#n, A).

Then I is an ideal in R:Let b,8’€] and r,7’€R. If u,4’ €A such that
u—u' = (rb+r'8")a for some ac A then a—rba=u"+r'8"a. Thus

a(u)~a(lu—rba)=a(a’ +r'b a)~a(u).

Therefore I is an ideal in R.

Suppose [ is the unit ideal, i.e., 7=R, then for any », 2’€A, we have
a(u)~a(a’). Therefore we have a(X)~a(0), Le., a(X)=M(X)a(0) for
some M(X)&EGL(n, A).

We want prove that the ideal I is the unit ideal. Suppose on the contrary
I is a proper ideal in R, so that ICJ for some maximal ideal J. Since R
is a domain, R is contained in the localization R;. As R; is local ring and
a(X)ER;[XI* is unimodular column one of whose coordinate is monic, so
that by Theorem 6, we have

a(X)=M(X)¢g
for some

M(X)=(m;;(X)) €GL(n, R,[ X ]).
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Adjoin a new indeterminate Y to R;[X] and define a matrix
NX, Y)=MX)[M(X+Y)]'€GL(» R;[X, Y]).

(The matrix M(X+Y) is obtained from M(X) by replacing each of its
polynomial entries m;;(X) by m;(X+Y). If M(X) 1= (%;;(X)), then it is
easy to see that (k;;(X+Y)) is the inverse of M(X-+Y)). Observe that the
definition of N(X, Y) gives N(Y,0)=1,, the »Xn identity matrix. Since
a(X)=M(X)e, it follows that a(X+Y) =M (X~+ Ye;. Therefore,

(%) N, Va(X+Y)=NX, YI)ME+Y)e=M(X)e=a(X).

Each entry of N(X,Y) is a polynomial in R;[ X, Y], hence may be written
as f(X)+g(X,Y) where each monomial in g(X,Y) involves a poritive
power of Y. Since N(X,0)=1,, we must have f(X)=0 or 1, and we can
conclude that the entries N(X, Y) are polynomials in R;[X, Y] containing
no nonzero monomials of the form sX? with >0 and s€R;. Let % be the
product of all denominators occuring in coefficients of the polynomial entries
of N(z,y). By definition of R;, we have 6&J and hence b&I Further,
N(X,bY)EGL(n, R[X, Y]) for we have just seen that replacing Y by 4Y
eliminates all denominators. Equation () gives

GL(n, R[X, Y1) a(X+bY)=GL(n, R[LX, YD a(X).
From this equation it is clear that 41 which is a contradiction.

LEmma 8 (Noether). Let A=HX,, ..., X,1, where k is a field, and let
acA, m be a natural number greater than the total degree of a. Define

Y=X,
and, for 1=i<n—i define
YVi=X;— X,

Then a=ca’, where ¢Sk and 4o is a monic polynomial over the polynomial
ring k[Yl, ceey Y,,_lj.

Proof. Since {Y3, ..., Y,_1} is a polynomial ring, for the defining equations
the Y’s give an automorphism of A (with inverse given by X,—X, and
X—X+X,m" for 1=i<n—1). The polynomial ¢ may be wirtten

a=Z',-a,-X1"1...Xj"-7'...X,,”‘,

a=Z',—a,-(Y1+ Ym“—l) z.1... (Y]+ Ym"'“.") i.i... (Y,,_1+ le) 21 Yiu)

_____Z'ia‘,(Yinm0+i”_1m1+"'+ijm7‘—.i+"'+i1m”‘1+
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terms with Y-degree<liym®+i, ym'~+...+im* 4 FimtY).
Since the integers i,-+i, ym-+...+iym* ! have different m-adic expansions,
the monomials @;Yis+"**+i;#*~! in a will not cancel out each other and if 4
is the one with highest degree it will emerge as the leading term in a as a
polynomial in Y.

MaIN THEOREM (Quillen-Suslin). If A=k[X,, ..., X, ], where k is a field,

then every finitely generated projective A-module is free.

proof. We prove by induction on n. If n=1, A is a principal ideal
domain, therefore the theorem holds. Every finitely generated projective
" A~module is stably free[51. Therefore it suffices to prove that A is a Hermite
ring by Theorem 4. Let a=(a;) be a unimodular column over 4. We may
assume a;%0. By Lemma 8, a=ca;,” where c€% and o/’ €k Yy, ..., Y, 1 [ Y]
is a monic polynomial (Y; defined as in Lemma 8). Since ¢ is a unit, there
is no loss of generality in assuming a;=a,", i€, a; is monic. Theorem 7
thus applies to give

a(X)=Ma(0),

where MeGL(n, A) and «(0) is a unimodular column over a ring B=
R[ Y1, ..y Ypoil- By induction, B is a Hermite ring, so that @ (0) =Neg; for
some NEGL(n,B). Hence MNEGL(n, A) and a=MNe,.
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