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COMPACTNESS OF HOMOGENEOUS SPACES
wrrn FINITE VOLUMES

By JAIHAN YOON AND KWANG SIK JEONG

Let G be a locally compact group and H be a closed subgroup such that
G/H admits a finite G-invariant measure. Then under suitable restrictions on
G or H it ensures G/H to be compact. For example, such is the case when
G is a connected Lie group and H is any closed subgroup with finitely may
connected components [4J. Also K. C. Sit generalized the above Mostow's
result and proved [5J that G/ H is compact whenever G is a locally compact
and u-compact group with the open identity component and H is the :fixed
points of a set of automorphisms and GIH admits a fiinite invariant me­
asure.

In this paper we prove the following;

THOEREM. Let G be a [C]-group and H the centralizer of an element of x
of G such that Q)= {gxg-1 : gEG} is closed. If G/H admits a finite inva~

riant measure, then G/H is compact.

A simple example provides a [C]-group G with non-open identity compo­
nent; G=HXK where H is any connected locally compact group and K
is a compact, non-discrete and totally disconnected locally compact group.

§ 1. Preliminary lemmas.

For a locally compact group G, Go will denote the identity component of
G and the group G will be called a [C]-group if the quotient group GIGo
is compact. It is well known that a [C]-group G can be approximated by a
Lie groups; each· neighbourhood of the identity contains a compact normal
subgroup K of G such that GIK is a Lie group.

We shall modify this well known approximation theorem so that we can
apply directly in proving our theorem.

We know that each neighbourhood of the identity of a compactly genera­
ted locally compact group G containes a compact normal subgroup H such
that the quotient group GIH satisfies the second axiom of countability D, p
71]. In partiCtttllf, ·fhis is truefOrrCj~gr()Ups. Now let K (res}>: H) be a
compact normal subgroup of a [C]-group such that GIK is a Lie group (re-
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sp. G/H satisfies the second axiom of countability). Then HK is acompact
normal subgroup and the second countable group G/HK is isomorphic (top­
ologically) to (G/ K) / (HK/ K) which is a Lie group. Thus we have

LEMMA 1. A [CJ-group can be approximated by second countable Lie group.

A locally compact space X is called a homogeneous G-space if G acts on
X transitively. Thus G/ H is a homogeneous G-space for any closed subgro
up H by a left translation. A regular Borel measure fl. on X is G-invariant
if fl.(gE) =fl.(E) for each Borel measurable set E and gEG.

The following lemma is proved by Greenleaf, Moskowitz and Rothschild
[2, p.lSl].

LEMMA 2. Let G be a second countable Lie group and A be the fixed points
of a set of automorphisms of G. If G/ A admits a G-invariant measure, then
G/ A is compact.

From now on a locally compact group will be assumed to be IT-compact
unless otherwise specified. Let G (resp. G') be a locally compact group and
let X (resp. X') be a homogeneous G-space (resp. G'-space).

LEMMA 3. If n : G-G' is an open and continuous epimorphism and r;: X
-X' an equivariant continuous surjection, then r; is an open mapping and a
finite G-invariant measure fl. on X can be transformed into a finite G'-inva­
riant measure fl.' on X'.

Although this lemma is well known, we sketch the proof for the conve­
nience sake.

The proof of the openness of r; is based on the fact that a continuous
surjection from a locally compact and IT-compact group to a Baire space
(which is also a G-space) is open [3, p.39J Applying this fact to the
mapping

f: G'-X'; g- g·r;(x),

we see that f is open. Now the equality, for any neighbourhood V of the
identity of G, n(V)r;(x)=r;(Vx)proves that r; is open [sJ. We show that
fl.', defined on X' by fl.' (E) = fl. (r;-l (E)) for every Borel set, is a regular
measure. The fl.' is clearly a measure. Since p' is finite on X, it suffices
to show that

fl.' (E) = sup tu' (K) : K' is compact, K'eE}

for each measurable set E in X'. Clearly we have

fl.' (E) ~ sup tu' (K') : K' is compact, K'eE} ~
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:?:sup{fi(7j-l(K'» : K' is compact, 7j-l(K')c7j-l(E)}.

For a compact set KC7j-l(E), 7j(K) is compact and p(K) s,p(7j-l(7J(K))
and it follows that

sup {f.l (7j-l (K'» : 7j-l (K') C7j-l (E), K' is compact}

2sup{tt(K) : K is compact, KC7j-l(E)}.

The second term of the inequality is, by the regularity of tt. tt7J(-l (E» and
this is p' (E) by the definition of p'. Thus we have shown that u' (E) =sup
{fi'(K') : K' is compact, K'cE} , the regularity of p'. The G'-invariance

of tt follows from the fact that 7J is an equivariant.

LEMMA 4. [4, Lemma 2. 5J Let H C F be closed subgroups such that GI H
admits a finite G-invariant measure p. Then CIF and F/H admits, respecti­
vely, finite G-invariant and F-invariant measures of :iJhich tt is a product.

§ 2. The Proof of Theorem

By Lemma 1, there is a compact normal subgroup K such that G/ K is a
second countable Lie group. Since KH-:::JK and KH is closed, GIKH admi­
ts a finite invariant measure (Lemm 4). Since (G/H)/(KHIH) is homeo­
morphic to G/KH and KHI H is compact, GIH is compact if and only if
G/KH is compact. Thus we reduced the problem to "whether GIKH is
compact provided GIKH admits a finite G-invariant measure".

Let A and A.' be the usual actions of G on GIHK and G/K on (G/K) /
(KHIK), respectively. Then as the diagram shown below, there corresponds
a continuous surjection (in fact, a homeomorphism) 7j: GIKH--7 (G/K) /
(KHIK) defined by 7j : yHK--7yK(HKIK) so that the diagram commutes,
i. e., 7J is an equivariant mapping.

A
GXGIKH ---- GIHK

in X 7j A.' 17j

G/KX «G/K) / (KHIK»---- (G/K) I (KH/ K)

In the diagram, n denotes the canonical projection of G onto G/K. There­
fore, by Lemma 2 the G-invariant finite measure on GIKH induces a fin­
ite GI K-invariant measure on (GI K) / (KHI K).

Let H' be the centralizer of xK in G/K. Since 7T:-1(H') = {gEG : g-lx-1gx

E K} and contains H, HKI K cH' and H'I (HK / K) admit finite invariant
measures.
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Sinc.e G/X is second countable Lie group, we can .apply Lemma 2 and
deduce that. (G/ X) / H is compact.

Note that (G/ X) / H' is homeomorphic to «G/X) / (XH/ X» / (H' / (XH/
X». Therefore, the compactness of G/ HX (which is homeomorphic to
(G/H) I (XH/ X» follows from the compactness of H' / (XH/ X) which
remains to be shown.

Since H' / (XH/X) :::::: 1l:-1 (H') / XH is a continuous image of 71:-1 (H') / H,
it suffices .to show that 1l:-1(H') / H is compact. Consider a continuous map
jz on G d~ned by j,z:(g) =g(x)g-l, gEG. Then jz-l(XX) =71:-1 (H') and
j :z:-1 (x) = H. Therefore the restriction f of j:z: to 1l:-1 (H') is continuous on
71:-1 (H') which is locally compact and O'-compact and the image of f is
a compact set Q) nxX.

We shall show that f is an open mapping. Since every element of X =

Q) nxX can be written as gxg-1 for some g in 71:-1 (H'), the group 71:-1 (H')
acts on X by conjugation. In fact let g' E 1l:-1 (H') then, because X is nor­
mal, g'(gxg-1)g'-lcg'(xK)g'-lcg'xg'-lXcxX. Moreover 71:- 1 (H') acts
transitively on X. To see this let z and z' be any two elements in X and
write z=xk and z'=xk' (k, k'EK). Clearly there exists an element h in H
such tq.at .hkh-1=k' and we have hzh-1= (hxh-1) (hkh-1) =xh'=z', proving
1l:~1<8') acts.on X transitively. Thus f is a continuous map of a lqcally
compact and O'-compact group 1l:-1 (H') onto a Bair homogeneous G-space X;
f is an open mapping (see the proof of Lemma 3).

Since f(g) = (g') is equivalent to g-lg ' EH, the quotient space 71:-1 (H') / H
is nomeomorphic to the compact space Q) nxK, which completes the proof of
the theorem.
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