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CONSTRUCTION OF APPROXIMATE SOLUTIONS OF LINEAR
PARTIAL DIFFERENTIAL EQUATIONS BY PARAMETRICES

By JoNGsik KmM*

The purpose of this paper is to construct distribution solutions of given
elliptic or strongly hyperbolic partial differential equations, modulo C* func-
tions. For the construction of such solutions we shall use pseudodifferential
operators and Fourier integral operators developed in [171,[2] and [4]. The
solutions thus obtained are approximate ones. But investigations of such solu-
tions clarify many properties of exact solutions such as propagations of sin-
gularities. We shall depend heavily on the techniques of constructing parame-
trices of linear partial differential operators developed by F. Treves in [7].

* 81. Preliminaries.

Throughout the forthcoming we shall denote by Q an open subset of R”.
A (linear partial) differential operator in Q will be an operator of the form

P(X, D)|¢T;,»Z:C“ (X) D= a1

where the coeflicients C, are complex valued C” functions in Q. We have
used the standard multi-index notations:
a== (0, -**, &), D*=D;"1---D,*, D;= —i(0/0x;) lai =0+t a,.
We assume that the order of P(X, D) is m and shall denote by P,(z, D)
the principal part of P(z, D).

Let # and v be distributions in Q.If z—v=C”(Q), we write z~v and
shall say that « is equivalent to v modulo a C function.

We shall rapidly recall the definitions of pseudodifferential operators and
Fourier integral operators with some related concepts. For details we refer

to [21,[41.

DEeFITION 1.1. We denote by $7(Q, Q) the linear subspace of C” functions
in QXQXR,, which has the following property; to every compact subset K

of QXQ and every triplet of n—tuples p, q, r, there is a constant Cp,g,(K)>0
such that

|D#D,2Dyra(z, y, ) | SCpg,r (K) A+ €)™ 121, (1.2)
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Elements of S*(Q, Q) are called symbols of order m.
DeFINITION 1.2. Let a(z, »,€) be a symbol in §#(Q, ). "The operator A
from &’(Q) to @’ (Q)defined by
Au(z) = (2x)" J]e““"’ -ta(z, v, ) u(y) dyds (1.3

for any uc&’(Q) is called a pseudodifferential operator. a(z,y,&) is called
a symbol of A

DEFINITION 1.3. An operator from @’ (Q) (or & (Q)) to D' (Q) is called
a regularizing operator if its image belongs to C”(Q).

. We recall that every pseudodifferential operator can be extended to an ope-
rator from @’ (Q) to @' (Q) modulo a regularizing operator. That is, for
any pseudodifferential operator A : & (@) —Q’ (Q), there is a pseudodifferential
operator B : & (Q)—D’ (Q) such that B— A is regularizing and B can be ex-
tended to a continuous linear operator from &' (Q) to @'(Q).

DEFINITION 1.4. Let d be a real number. A function ¢=54(Q, Q) is said
to be a phase function if it is real and if there is a number C>0 such that,
for |&| large,

182,981 ?02rp and |0,,6|%,,:6 belong to S~°(Q2, Q; R*), 1.4
where 0,,:0= (0.9, |£19; ¢).

DEFINITION 1.5. Let ¢€84(Q, Q) be a phase function and z€S8m(Q, Q).
Then the operator from &'(Q) to @’(Q) defined by

Fu(z) = (21) 2 Heiw‘y‘%(x, 9, &) u(y) dydé .5

for any u<&’(Q) is called a Fourier integral operator.

§2. Elliptie linear partial differential equations

In this section we shall construct parametrices of elliptic differential ope-
rators and solve, modulo C” functions, elliptic differential equations.

DeFNITION 2. 1. The differential operator P(z, D) is said to be elliptic in
Q if, for every z€Q, P(z,£)=0, é=R, implies §=0.

THEOREM 2.1. Let P(x, D) be an elliptic differential operator. Then there
exists a psendodifferential operator K, called a parametriz of P(z, D), such
that PK~I modulo a regularizing operator. The symbol of K is 27,
where

bo=1/p(z, 8, ‘ 2.1)
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bj=—(1/P(z, S));Z_:o I (1/pD0¢pDsb; (7>0) 2.2)

Proof. It is enough to find a pseudodifferential operator K with symbol &
such that
2 (1/p)0g2pD =1 2.3)
since the symbol of PK is given by § 1/p0)0:2pD,96 (cf. [5)).
Setting 6= X520 b;, we can determine the &;, successively by the equations

(2.3) to get (2.1) and (2.2). Since the homogeneous degree of 5; in &
goes to —oo as j—oo, Xb; defines a symbol in §~(Q, Q) and we get PK~I

modulo a regularizing operator. (Q.E.D.)
THEOREM 2. 2. Let P(z, D) be an elliptic operator and K be a parametriz
of P as in the Theorem 2.1. Then the distribution solution u of
Pz, D)u=v in Q 2. 4)
for any distribution v is given by u~Kv in Q modulo C” function.

Proof. We may assume that P and K are defined on @'(Q). Since PK
~I, we have P(z, D)Kv~v modulo C* functions. If P(z, D)u=v, then
P(z, D) (Kv—u) is a C” function. Since P(z, D) is hypoelliptic, Kv—u is a
C” function. Thus u~Kv modulo a C” function. (Q.E.D.)

§3. Strongly hyperbelic linear partial differential eguations

Our purpose in this section is to solve locally, modulo C* functions, st-
rongly hyperbolic equations with some constraints on the data. Thus we
think of the differential operator

P(z,t, D,,0,) =0,+2%, P;(x,t, D)o/ 3.1

where z= (z!, ---, z*) belongs to R*, ¢ to an open interval (=7, T) and P;
is a differential operator of order j in the z-variables. We always assume
that P has C” coefficients in z and ¢ variables.

DEFINITION 3.1. We say that the operator P(z, ¢, D,, 8,) is strongly hype-
rbolic in QX (—T, T) if, for every point (z¢, 2p) of this open set and é&
R,\ {0}, the constant coefficient polynomial p, (z, 20, &, 7), the principal
part of p(z,¢,& 7), has m distinct, purely imaginary roots in .

We seek a distribution uf(z,7) in QX (—T,T) satisfying, modulo C
functions, the following Cauchy problem: -

P(z,t, Dy 0)u=f in QX (=T, T) (3.2)
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diuli—o=u; in Q, u=0,...,m—1, 3.3

where f is an element in C*(QX (— T, T)) with the compact z—projection of
the support of f, independently from ¢z, #; is an element in &' (2) for each
j and P(z,¢, D, 3, is a strongly hyperbolic differential operator.

By the well known Duhamel’s principle, the solution of (3.2) and (3.3),
which is unique, is given by

w@ ) =5 B Ou;0+[ Ban . Of @ tDa 3.9)
where, for each j=0,1,...,m—1, E;(t)=E;(¢,0) and E; (¢, ') is the solution
of

P(z,t, D, 0)E;(t, ') =0, —T<<T (3.5)
0 if B+#j5, _
DRE;(t, ') | s=p= 1 ;f k=j’. (£=0,1, ...m—1) 3.6)

In (3.5) and (3.6), E;(¢,t') is a smooth function of £ and ¢’ in (—T, T)
with values in the space of linear operotors on &’(Q).

We shall, in the following, represent E;(¢) for j=0,...,m—1 and t&
[~ Ty Tol for some T, 0<Ty,< T, by a sum of Fourier integral operators
F;;(#) modulo regularizing operators. Once this is done, E;(¢), hence
E;(¢,¢), maps C,”(Q) into C"(Q) as a general Fourier integral operator
does. Thus the last term in (3.4) becomes a C” function, giving rise to a
required solution, mudulo C” function, of (3.2)and (3.3); namely,

2@ O~E EFp®)w® @7

Since P,(z,t,& ) has m distinct, purely imaginary roots whatever (z,¢)
in QX (—T,T) and §é€R,\ {0}, we may denote them by il (z,¢,5), k=
1,...,m, with the agreement that ;<{A;<(---<4,.

THEOREM 3. 1. Let ¢p (k=1,2, ..., m) be a solution of
8. 0= (x, t, 0,01, 3E.8)

Gpli=o=z-& 3.9

where A=C”(QX (—T, T)XR,\1{0}) is a real valued and positive homogene-
ous of degree one with respect to §&. Then for some To,0<Ty<T, ¢ is a
phase function for any t& (—To, T).

Proof. The solution ¢ is real valued and, because of the uniqueness of
the solution and of the fact that the initial datum z-§ is homogeneous of

degree one in &, ¢, is positive-homogeneous of degree one in & Thus
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eSS (Q, Q). Now if we set, for large |£],

w=w(z, 5 t,&) =dp(z, 1,5 —y-&,

we have axw (.’13, Y, 0, E) =az¢k (xa 0, s) =$
Hence we may find 7,>>0 such that

|0,20] = 1€]/2 for all z€Q, |¢|<T,.

On the other hand, it is clear that 8,0=&. Thus both |0,w| and |d,w|
are elliptic for |¢|<(Ty in the whole QX Q and so are |0,,:¢:|2 and |9,,:0; |2
Therefore for |#|<Ty, (1.4) holds for ¢=d and thus ¢; is a phase function.
(Q.E.D.)

Now in our case, since the given data of the Cauchy problem are distri-
butions with compact support, we may assume that (3.8) has a solution in
Q since it is always locally solvable.

Thus for each linear factor (9,—id;) of P we constructed a phase function
4 =81(Q,2). We shall determine symbols a;;(z, #,€) such that

E;(H)u(z) ~§ @) |etaz (z, 1, D)2 (@) a2

=L o[ au@ L Oulnddt,  (H<T) (.10)

In view of (3.5) it suffices to determine aj; to satisfy

0=P(xz,t, Dy, 0) E; ) u(z) ~
é (2m) | P (, ¢, Do+ 0,01 0,1 i0,01) aja (2, 8, E)a(§)dE  (3.11)

Since % (k=1,2,...,m) are linearly independent, we may require

P(x, t, D:c+a.z¢kv at+ lat¢k) Qi (xa L S) =0 (3° 12)
Now let us set
4 (1’, z, (S) =l§) Qjpl (‘T’ Z, E) y (3- 13)

where aj;; is homogeneous with respect to § whose homogeneous degree
decreases to —oo as I—>co. Since P,(x,t, 0,04 i0,6;) =0, from (3.12)
(0:Pm) (x, t, 0.4, i0:9) 0saji0
+ é(aE»P w) (Z: &, 0208 10:98) D u@ia0+8 (9232, 2, E) ajee=0,  (3.14)
where #(¢;;x, t,£) is the coefficient of order m—1 in &.
On the other hand, from (8.8),
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@.Pw) (@, 1, Dot i08s) =i U 1, Duh) — Ay (2 1,0,60)  (3.15)

and
(05, P ) (, t, 0.0p, 10,0) =i (0,Py) (2, 8, 0,04, i0,08) Cp,, (2,8, 8), (3. 16)
where
Chyy (2, 1, &) = (00,48 (z, £, 0%). (3.17)
We write

Cirolz, 2,8) =C (457, 8,5 / (0.P,) (. 8, 0,04 0:Bp).  (3.18)
Then the equation (3.14) reads, now:

3:ajt0— ZCi (5,4, 8) @tjiotCino (@, £, &) ajao=0. 3. 19)
The a;; (I>>0) are determined successively by the following equation;

atajkl - ,,Z;'lck” (.2', Z S) a_,,uajkl+ Ck70 (.Z', (A S) Akl

=Ele,k' (x,t, & 05 0 ajra-u» (3. 20)

where Q. are differential operators whose expressions can be computed from

(3.14).
To determine a;; concretely we require appropriate conditions at time =

0. In virtue of (3.6), a;u has to satisfy
0/ E; () u(x) ~§1(27z) | (9, +i0,01) " ajp(x, t, ) ads.  (3.21)
Therefore it suffices to find a;u such that

m by I
5@t idg0apl o = {8 £ 3.22)

Substituting ajk=§_‘(.) aju, since 8,0,=2,(z,0,&) when t=0, from (3.22) we

get

o e
ké(ilk)j'ﬂjkol:zo= {é g ;, $j’ (3.23)

Let V(zy, +++, 7,,) be the Vandermonde determinant with respect to 7y, :*,
T, Then
QiR = ‘fjk (ilb Tt /z'\b R lem) / V(ilb ) izm)9 (3» 24)
when ¢t=0.
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Here we denoted by Vj(zy, -+, 7, ***, T,) the minor of the term 7. ajpo 1S
of homogeneous degree —;j in & and thus belongs to $-7(Q, Q).
The a;;; (1<<0) are determined successively by the equations

Ms

) m . '
(ilk)”ajkz=j§ j;:{{}”k(x, S, 00 ajpq-jory (3.25)

k=1

where for each j''=1,2, ...,5/ Ri:(z,&,8,) is a polynomial of degree < ;*
with respect to 9,, which can be computed from (3.22). a;y is of homoge-

neous degree —j—I and thus belongs to §-7-1(Q, Q) and lf]aju defines a
=0

symbol belonging to $-7(Q, Q).
Summarizing the above argument, we get

THEOREM 3. 2. Let a;; be symbols determined by (3.19)-(3.24) and (3.20)
~(3.25). Let ajy=2Xir0a;u and let ¢, be as in the Theorem 3.1. IfF; is
the Fourier integral operator defined by

Fuu(z)=2n)" jfci("i"‘r’k)aﬂ (z, ¢, 8 uly)dyds,

then for suitable T, (0<To<T) determined as in the Theorem 3.1, the
solution u{z,t) of (3.2)—(3.3) is given by

w(o D~E, EFa)5;)
for {t|<Ty.
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