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CONSTRUCTION OF APPROXIMATE SOLUTIONS OF LINEAR
PARTIAL DIFFERENTIAL EQUATIONS BY PARAMETRICES

By ]ONGSIK KIM*)

The purpose of this paper is to construct distribution solutions of given
elliptic or strongly hyperbolic partial differential equations, modulo C" func­
tions. For the construction of such solutions we shall use pseudodifferential
operators and Fourier integral operators developed in DJ, [2J and [4J. The
solutions thus obtaine-:l are approximate ones. But investigations of such solu­
tions clarify many properties of exact solutions such as propagations of sin­
gularities. We shall depend heavily on the techniques of constructing parame­
trices of linear partial differential operators developed by F. Treves in [7J.

- §1. Preliminaries.

Throughout the forthcoming we shall denote by D an open subset of Rn.
A (linear partial) differential operator in D will be an operator of the form

P(X, D) =L:.Ca(X)J)a (1. 1)
Iczjs;m

where the coefficients Ca are complex valued COO '[unctions in Q. We have
used the standard multi-index notations:
a= (ah "', an), Da=D1al···Dna", Di=-i(ojoxj) lal =al+···+an•

We assume that the order of p eX, D) is m and shall denote by P". (x, D)
the principal part of P (x, D) .

Let u and v be distributions in D. If u-vEC'" (D) , we write u---u and
shall say that u is equivalent to v ,modulo a Coo function.

We shall rapidly recall the definitions of pseudodifferential operators and
Fourier integral operators with some related concepts. For details we refer
to [2J, [4J.

DEFITION 1. 1. We denote by S". (D, D) the linear subspace of COO functions
in DXDXR", which has the following property; to every compact subset K
of Qx!) and every triplet of n-tuples p, q, r, there is a constant Cp,q,r(K) >0
such that
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Elements of Sm (0, 0) are called symbols of order m.

DEFINmON 1. 2. Let a (:c, y,~) be a symbol in Sm (0, 0). 'The operator A
from €/ (0) to Q)' (D) defined by

Au(:c) = (2%) -IlSSei(X-Jl) .ea(:c, y, tJ u(y) dytle (1. 3)

for any uE6' (0) is called a pseudodifferential operator. a (:c, y, e) is called
a symbol of A

DEFINITION 1. 3. An operator from Q)' (D) (or 6' (D)) to Q)' (D) is called
a regularizing operator if its image belongs to C'" (a) .

. We recall that every pseudodifferential operator. can be extended to an ope­
rator from Q)' (0) to Q)' (0) modulo a regularizing operator. That is, for
any pseudodifferential operator A : g' (0) -+Q)' (0), there is a pseudodifferential
operator B : 6' (D) -+Q)' (0) such that B-A is regularizing and B can be ex­
tended to a continuous linear operator from 6' (D) to Q)' (0).

DEFINITI9N 1.4. Let d be a real number. A function ,pESd (0,0) is said
to be a phase function if it is real and if there is a number 00 such that,­
for IeI large,

10x>yif>I-20".,e9> and IOy,eif>1-2oy,ef/> belong to S-c(O, D;R2n), (1. 4)

where ox,eif>= (oA, leloe if».
DEFINITION 1. 5. Let if>ESd (D, D) be a phase function and aESm(D, Q).

Then the operator from 6' (0) to Q)' (0) defined by

Fu(:c) = (2%)-2He'9(X,y,e)a(:c, y, e) u(y)dyde (1. 5)

for any uE6' (D) is called a Fourier integral operator.

§ 2. Elliptic linear partial differential equations

In this section we shall construct par~trices of elliptic differential ope­
rators and solve, modulo C'" functions, elliptic differential equations.

DEFINITION 2.1. The differential operator P(:c, D) is said to be elliptic in
o if, for every :cED, P(:c, e) =0, ~ERIl implies ~=o.

THEOREM 2. 1. Let P (x, D) be an elliptic differential operator. Then there
exists a pseudodijJerential operator K, called a parametrix of P(:c, D), such
that PK"-J[ modulo a regularizing operator. The symbol of K is ~j=obj,

where

bo=l/p(:c, e), (2.1)
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j-I

bj= - (1/P (a;, ~» ~ L: (1/pr) 0lpD:r:qbj' U>O) (2. 2)
j' =0 It>!=j- j'

Proof. It is enough to find a pseudodifferential operator K with symbol b
such that

2 (I/p!) olpDxqb=l (2.3}

since the symbol ofPK is given by ~ (1/p!)olpD:r:qb (cf. [5J).
p

Setting b= L:j=o bj, we can determine the bi , successively by the equations
(2.3) to get (2.1) and (2.2). Since the homogeneous degree of bi in ~

goes to - 00 as j-HX', ~bj defines a symbol in S-m (D, D) and we get P K",-,r
J

modulo a regularizing operator. (Q. E. D.)

THEOREM 2. 2. Let P (a;, D) be an elliptic operator and K be a parametria;­
of P as in the Theorem 2. 1. Then the distribution solution u of

Pea;, D)u=v in D (2.4)

for any distribution v is given by u"'-'Kv in D moaulo Coo function.

Proof. We may assume that P and K are defined on Q)' (D) . Since PK
~I, we have Pea;, D)Kv~ modulo Coo functions. If Pea;, D)u=v, then
Pea;, D) (Kv-u) is a C"" function. Since Pea;, D) is hypoelliptic, Kv-u is a
Coo function. Thus u~Kv modulo a Coo function. (Q. E. D.)

§ 3. Strongly hyperbolic linear partial differential eqnations

Our purpose in this section is to solve locally, modulo Coo functions, st­
rongly hyperbolic equations with some constraints on the data. Thus we
think of the differential operator

P(x, t, D:r;o at) =or+};j=1 Pj(x, t, Dx)Otm- j (3.1)

where X= (Xl, "., x n) belongs to Rn, t to an open interval (- T, T) and Pi
is a diff~ntial operator of order j in the x-variables. We always assume
that P has Coo coefficients in x and t variables.

DEFINITION 3.1. We say that the operator P(x, t, D:r;o at) is strongly hype­
rbolic in Dx (- T, T) if, for every point (xo, to) of this open set and ~E

Rn'" {O}, the constant coefficient polynomial Pm (xo, to, ~, z), the principal
part of p (x, t, ~, z), has m distinct, purely imaginary roots in 'C.

We ~k a .distribution u(.x, t) in Dx (- T, T) satisfying, modulo COO
functions, the following Cauchy problem: .

P(x, t, D:r;o Ot)u f in Dx (- T, T) (3.2)
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o{ult=o=uj in 0, u=O, ... , m-I, (3.3)

where f is an element in Coo (0 X ( - T, T» with the compact x-projection of
the support of f, independently from t, Uj is an element in &" (0) for each
j and P(x, t, D:J:) at) is a strongly hyperbolic differential operator.

By the well known Duhamel's principle, the solution of (3. 2) and (3. 3),
which is unique, is given by

u(x, t) = ~lEj (t) Uj (t) +ftEm- 1 (t, t')f(x, t') dt' (3.4)
J=O • 0

where, for each j=O, 1, ..., m-I, Ej(t) =Ej(t, 0) and E/t, t') is the solution
of

P(x, t, Dx , ot)Ej(t, t') =0, - T<t<T (3.5)

olEj(t, t') It=t'= {~ ~~ ~*~: (k=O, 1, .•.m-I) (3.6)

In (3. 5) and (3. 6), Ej (t, t') is a smooth function of t and t' in (- T, T)
with values in the space of linear operotors on &" (0) .

We shall, in the following, represent Ej(t) for j=O, ..., m-I and tE
[ - To, To] for some To, O<To<T, by a sum of Fourier integral operators
Fj,,(t) modulo regularizing operators. Once this is done, Ej(t), hence
Ej (t, t'), maps Cc"" (Q) into COO (0) as a general Fourier integral operator
does. Thus the last term in (3.4) becomes a Coo function, giving rise to a
required solution, mudulo Coo function, of (3. 2) and (3. 3); namely,

(3.7)

Since Pm (x, t, ~, -r) has m distinct, purely imaginary roots whatever (x, t)
in 0 X ( - T, T) and ~ERn'" {D}, we may denote them by ;A'k (x, t, ~), k=
1, ..., m, with the agreement that A1<it2<···<Am•

THEOREM 3.1. Let cPk (k=l, 2, ..., m) be a solution of

0tcP"=A,, (x, t, OxcPk), (3.8)

cP" It=o=x·~ (3.9)

where AECoo(OX (- T, T) X Rn'" {O}) is a real valued and positive homogene­
ous of degree one with respect to t Then for some To,O<To<T, ifJk is a
phase function for any tE (- To, To).

Proof. The solution cPk is re~l valued and, because of the uniqueness of
the solution and of the fact that the initial datum x·~ is homogeneous of
degree one in ~, cP" is positive-homogeneous of degree one in e. Thus
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rpk E SI (Q, Q). Now if we set, for large I~ I,
w=w(x, y, t,~) =rpk(X, t, c;) -y.c;,

we have oxw(x, y, o,~) =Oxr!Jk(X, 0, c;) =c;.
Hence we may find To>O such that

IOxwl;:;:: 1~1/2 for all xEQ, It I<To.

On the other hand, it is clear that Oyw=c;. Thus both loxw I and 1OyW I

are elliptic for It I<To in the whole QxQ and so are [ox'erpkI 2 and IOY,er!JkI 2•

Therefore for It I<To, (1. 4) holds for c= d and thus rpk is a phase function.
(Q. E. D.)

Now in our case, since the given data of the Cauchy problem are distri­
butions with compact support, we may assume that (3. 8) has a solution in
Q since it is always locally solvable.

Thus for each linear factor (at - iAk) of P we constructed a phase function
rpkES1(Q, Q). We shall determine symbols ajk(x, t,~) such that

Ej(t)U(X)"'-'~l(2n:)-nSei9iajk(x, t, t;)u(~)d~

= fl (2n:) -nJSeiCXY-<?k) ajk (x, t,~) u(y)dyd~, (I t I<To) (3.10)

In view of (3.5) it suffices to determine ajk to satisfy

O=P(x, t, D,r> ot)Ej(t)u(x)"'-'

k~l (2n:)-nfeiiflkP(x, t, Dx+Oxrph Ot+ iOtrpk) ajk (x, t, t;)it(~)d~ (3.11)

Since /9k(k= 1, 2, ... , m) are linearly independent, we may require

Now let us set ..
ajk (x, t, ~) = 1:: ajkl (x, t, ~),

1=0

(3.12)

(3.13)

where ajkl is homogeneous with respect to ~ whose homogeneous degree
decreases to - 00 as 1-,>00. Since Pm(x, t, Oxrpk, iOtrpk) =0, from (3.12)

(OtPm) (x, t, 0xrpk, iOtrpk) OtajkO

+.t (Oe"Pm) (x, t, 0xPk, iOtrpk) D .."ajko+c (rpk;X, t, ~)ajkO=O, (3.14)
0=1

where C(Pk; x, t,~) is the coefficient of order m-I in ~.

On the other hand, from (3. 8),
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and

where

Jongsik Kim

We write

(3.17)

ChO (x, t, .;) =C (tPk; x, t, ';) / (OrPm) (x, t, 0hk, iOetPk).

Then the equation (3. 14) reads, now:

(3.18)

..
OeajkO- :ECk,v(x, "t,';) (O",vajkO+Ck,O(X, t, ';)ajko=O. (3.19)

tr=l

The ajkl (1)0) are determined successively by the following equation;

Oeajkl- tck,v(x, t, ';)O",uajkl+ChO(X, t, e)ajkl
.=1

(3.20)

(3.22)

(3.21)

where Qhk' are differential operators whose expressions can be computed from
(3.14).

To determine ajk concretely we require appropriate conditions at time t=
O. In virtue of (3. 6), ajkl has to satisfy

ai'Ej (t) u (x) "-'tl (2n:) -nSiif>k (oe+ iOetPk)i'ajk(x, t, ';) ad";.

Therefore it suffices to find ajkl such that

~ ." {I if j'=j
.t.J (oe+ZOetPk)J ajkle=o = 0 ·f "-1-.'
k=1 1 ) --r-J.

""Substituting ajk=:E ajkl, since OerPk=Ak(X, 0,';) when t=O, from (3.22) we
1=0

get

"'.., _{I if j'=j,:E (tAk») ajkO Ie=o- 0 ·f ., -I- •
k=1 1 J --r-J.

Let V(!'!> ..., 'rm) be the Vandermonde determinant with respect
7:m, Then

/'..

ajkO= Vjk (iA,!> ..., 'rh .", iAm) I V(iA,h "., iA,m),

when t=O.

(3.23)

to 'rh "',

(3.24)
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"'-
Here we denoted by Vjk(Th ... , Tk, ..., Tm) the minor of the term Tkj. ajko IS

of homogeneous degree - j in eand thus belongs to S-j (D, D).
The ajkl CZ<O) are determined successively by the equations

(3.25)

where for each j"=l, 2, ...,j' Rf,k(X'~'at) is a polynomial of degree:::;; j"
with respect to at, which can be computed from (3. 22). ajkl is of homoge-

neous degree -j-l and thus belongs to S-j-l(D, D) and ~ajkl defines a
1=0

symbol belonging to S- j (D, D).
Summarizing the above argument, we get

THEOREM 3. 2. Let ajk be symbols determined by (3. 19) - (3. 24) and (3. 20)
-(3.25). Let ajk=~'['"Oajkl and let if>k be as in the Theorem 3.1. IfFjk is
the Fourier integral operator defined by

FjkU(X) = (2n) -llffei(x·n'k)ajk(x, t, ~)u(y)dyd~,

then for suitable To (0< To<T) determined as in the Theorem 3. 1, the
solution u(x, t) of (3.2) - (3. 3) is given by

m-I m

u(X, t)"'~ (~Fjk(t))U/X)
j=O .1=1

for It I<To.
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