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ON A STABLY FREE MODULE

By T. KWON, K. LEE, 1. CHO, S. PARK*>

1. Introduction

Let R be an integral domain of characteristic 0 with quotient field Land
n a finite group such that no rational prime dividing the order of n is a
unit in R. Let T be a free abelian group or monoid of finite rank.

We prove that for any finitely generated projective R[TJ[llJ-module P, -:'
Ltg)RP is L[TJ[llJ-stably free.

This result is a generalization of a theorem of Sharma [4, p. 303].

2. Notations and Definitions

Each ring considered in this article will be assumed to be an assoclatlve
ring with 1 and all ring homomorphisms as well as all modules are unitary.

For a finite group n by ord (ll) we mean the order of n.
For a ring A, ~(A) denotes the class of all finitely generated projective

(left) A-modules.
Let PE~(A). Then P is said to be stably free over A, if there exists a

finitely generated free A-module F such that PfBF is free over A. It is
known that a finitely generated projective A-module P is stably free if and
only if PEZ[AJ in Ko(A) (Lam [2, p. 40J).

Let R be a commutative ring and pESpec(R), the prime spectra of R.
Then the minimal number of generators of Pp=Ptg)Rp as a Pp-module is

R

said to be the rank of Pp over Rp. We denote it by rkVP'
We shall say that P has constant rank r and write rkRP=r if for every

t;JESpec(A) rkpp=r.
Let A be a local ring (not necessarily commutative) and PE\lS(A). Then

the minimal number of generators of P is said to be the rank of P over A
and it is alsodenoted by rkAP.

Let D be a finite group, A a ring and @ be the class of all cyclic sub­
groups of D. Then KO(All)ll denotes
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i*
nker [Ko (All) - Ko (All')].
Il'ell
Il' E()

See Swan [5, p. 23J.

3. Preliminary Results
PROPOSITION 3. 1. Let R be an integral domain of characteristic 0, II a

finite group of order n and PE~(Rll), If no rational prime dividing n is a
unit in R, then n divides rkRP.

Proof: Let p be a rational prime dividing n and IIp be a Sylow p-subgroup
of D. Then PE~(R(Ilp». Hence if the theorem is true for p-groups it is
true for finite groups. Thus we may assume that Il is a p-group.

Since p is not a unit in R, there is a maximal ideal illl in R with pE illl.

P/illlP= (R/illl) ®RP E ~ ( (R/illl) Il)

implies that P/'lflP is free over (R/'lfl)Il (Swan [6, p. 58J). Thus we have

dimR /IDl (PlilllP) = n· rkR /IDlH (plilllP).

But rkRP= rkR/<m (Rlilll®RP) =dimR /IDl ( (R/illl) ®R p) =dimR /IDl (P/<;JRp)

This completes the proof.

CoROLLARY 3. 2. Let R be an integral domain of characteristic 0 and D
an finite abe/ian group such that no rational prime dividing the order of D is
a unit in R. Then PE'$(RD) has constant rank.

Proof: It is enough to show that RD has no idempotent other than 0 and
1. If e is an idempotent in RD, then we have the following direct sum

RIl=RDeff:)RD(l-e).
Let P=RIle, Q=RU(l-e). Then the order of Il divides rkRP and rkRQ
by Proposition 3. 1. But

ord(U) =rkR(RIl) =rkRP + rkRQ.
Therefore, rkRP=O or rkRQ=O. Hence e=O or 1.

PROPOSITION 3. 3. Let f : R -7 S be a homomorphism of commutative rings.
If no idempotent in R is in the kernel of f. then H(r): H(R)-7R(S) is
injective (Swan [4, p. 138J).

Proof. Let g be an element of the kernel of RU). Then for every ideal
qESpec(S), O=H(f) (g) (q) =g(f-lq). Thus it is enough to show that for
each j:JESpec(R), gel:') =0.

Let n be a rational integer with g(p)=n. We need only to show that
n=O. Let X=g-l(n), then X is open and closed in Spec(R) and so there
is an idempotent e in R such that X= VU), a Zariski closed set in Spec (R),
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where I is an ideal in R generated by I-e. By the given hypothesis we
have fee) :to, thus I-f(e) is a non-zero idempotent and so not a unit
in S. Hence there is a maximal ideal IDl in S with I-f(e) EIDl. Thus
I-eE f-I([Jl) and so f-I(IDl) EX. Therefore n=g(f-I(IDl» =H(f) (g)(IDl).

But H(f) (g) =0. Hence n=O.

PROPOSITION 3. 4. Let A be a left regular ring and let T be a free abelian
group or monoid. Then the canonical homomorphism Ko(A)~Ko(A[TJ) is an
isomorphism (Bass [1, p. 636J).

4. Main Theorems

THEOREM 4. 1. Let R be an integral domain of characteristic 0 with quotient
field L and let S be a subring of L with ReSeL and D a finite group of
order n such that no prime dividing n is a unit in R. Furthermore, we assume:

(1) For each cyclic subgroup D' of D every finitely generated projective
SD'-module with constant rank is stably free.

(2) Ko(SD) is torsion free.
Then PE~(RD) implies S0RP is stably free over SD.

Proof. Let PE'$«Rll». Then rkRP=rn for some positive rational integer
r by Proposition 3.1. We claim that [S0RP]=r[SDJ in Ko(SD). We know
that n2K o(SD)(J=O (Swan[6. pp. 23, 25J). But, by the given hypothesis (2),
Ko(Sll) is torsion free. Hence Ko(Sll)(J=O. Therefore it is enough to show
that [S0PJ-r[SDJEKo(SD)(J. For each cyclic subgroup D' of D, P has

R

constant rank over RD' by Corollary 3. 2. Let RD' ~ SD be the canonical
ring homomorphism, qESpec(SD') and let lJ f-l(q). Then we have the
following canonical homomorphism

(RD')p~ (SU') q

which is induced by f.
Note the following canonical isomorphisms

(SU') q ® (S® RP) ~ (SD') q ® (SD' ® p)
sw SW RW

~ (SD') ® «RD') 0 P) ~ (SU') ® F
q (RW), P RTI' q(RW),

where F is a free (RD') .p-module on rkRD,l' generators. This shows that
S®P has constant rank over SD'. Therefore [S®PJ=m·[SD'] in Ko(SD'),

R R

for some positive rational integer m, by the hypothesis (1). We will prove
below that m= (ll: U')· r where (D: D') is the index of U' in U. We have
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[SQ?)RP]=m·[Sll']=r· (ll: ll') . [Sll'J=r' [SllJ in Ko(Sll').

Thus [SQ?)RPJ-r[Sll]EKo(Sll)ll. But Ko(Sll)ll=O. Hence SQ?)P IS stably
R

free over Sll. It now remains to be shown that m=r' (ll: ll'). Since
[SQ?)PJ=m·[Sll'J in Ko(Sll'), we have [LQ?)PJ=m·[Lll'J in Ko(Lll') and

R R

so [LQ?)PJ=m'ord(ll') '[LJ in Ko(L). But rksP=r'ord(ll) =m'ord(ll'),
R

for Ko(L) is torsion free. Therefore, we have m=r' (ll: ll').

THEOREM 4. 2. Let R be an integral domain of characteristic 0 with quot­
ient field L. Let II be a finite group such that no rational prime dividing the
order of II is a unit in R. Let T be afree abelian group or monoid of finite
rank. Then for every PEll3eR[T][ll]J, L®RP is stably free over L[TJ[llJ.

Proof. Let m be the order of II and N be the set of non-negative rational
integers. Since the following map R[ll][ T] ~ R[ T][ll],

L; (L;'rvgg) Tv - L; (L; 'rvgTv)g
vEN- gEfI gEO VeN-

is an isomorphism of rings, we may identify R[ll][T] and R[T]ell]. Since
no rational prime dividing the order of II is a unit in R[T], we only need
to show that L[T] satisfies the two conditions of Theorem 4. 1. Since Lll is
semisimple, it is left regular. Therefore we have the following isomorphism

Ko (L[T]ell]) =Ko(L[ll][T]) ~Ko(Lll)

by Proposition 3. 4. Furthermore, Ko (Lll) is torsion free. Now it is enough
to show that for each abelian subgroup lI' of II every finitely generated
projective L[T][ll'J-module with constant rank is stably free.

From now on we may assume II is abelian. Let f: Lll~ Lll[TJ be
the canonical injection. Then the following diagram of canonical homomor­
phisms

Ko(j)
Ko(Lll[TJ) ~ Ko(Lll)

lr - 1r

H(Lll[T]) --< H(Lll)
H(f)

is commutative (Swan [5, p.138J). But H(f) is injective by Proposition
3.3. Furthermore, r: Ko(Lll) ~ H(Lll) is also injective. For an element x
of the kernel of the map r, there are P, FE~(Lll) such that F is free and
x=[PJ-[FJ in Ko(Lll). Thus for each .pESpec(Lll), rp(.p) =rkLJI(F).
Hence P has constant rank. Since Lll is semisimple it is semilocal and P
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is free. This implies that x= [PJ - [F] = 0, and so the map r is injective.
Now it is clear that

r : Ko(LH[T])~ H(LH[TJ)

is also injective. Let PE~(LH[T]) with constant rank (Bourbaki [2, § 5.3,
Prop.5J). Let F be a free LHCT]-module with rkLlllTJF=rkLllCTJP. Then
rp=rF' But r is injective. Hence [P~=[F] in Ko(LH[T]).

This completes the proof.
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