ON A STABLY FREE MODULE

By T. KWON, K. LEE, I. CHO, S. PARK*)

1. Introduction

Let R be an integral domain of characteristic 0 with quotient field L and II a finite group such that no rational prime dividing the order of II is a unit in R. Let T be a free abelian group or monoid of finite rank.

We prove that for any finitely generated projective R[T][H]-module P, $L \otimes_R P$ is L[T][H]-stably free.

This result is a generalization of a theorem of Sharma [4, p. 303].

2. Notations and Definitions

Each ring considered in this article will be assumed to be an associative ring with 1 and all ring homomorphisms as well as all modules are unitary.

For a finite group II by ord(II) we mean the order of II.

For a ring A, $\mathfrak{P}(A)$ denotes the class of all finitely generated projective (left) A-modules.

Let $P \in \mathfrak{P}(A)$. Then P is said to be *stably free over* A, if there exists a finitely generated free A-module F such that $P \oplus F$ is free over A. It is known that a finitely generated projective A-module P is stably free if and only if $P \in \mathbf{Z}[A]$ in $K_0(A)$ (Lam [2, p. 40]).

Let R be a commutative ring and $p \in \operatorname{Spec}(R)$, the prime spectra of R. Then the minimal number of generators of $P_{\mathfrak{p}} = P \bigotimes_{R} R_{\mathfrak{p}}$ as a $P_{\mathfrak{p}}$ -module is said to be the rank of $P_{\mathfrak{p}}$ over $R_{\mathfrak{p}}$. We denote it by $\operatorname{rk}_{\mathfrak{p}} P$.

We shall say that P has constant rank r and write $\operatorname{rk}_R P = r$ if for every $\mathfrak{p} \in \operatorname{Spec}(A)$ $\operatorname{rk}_{\mathfrak{p}} P = r$.

Let A be a local ring (not necessarily commutative) and $P \in \mathfrak{P}(A)$. Then the minimal number of generators of P is said to be the rank of P over A and it is also denoted by rk_AP .

Let II be a finite group, A a ring and \mathcal{O} be the class of all cyclic subgroups of II. Then $K_0(AII)^{\mathcal{O}}$ denotes

Received June 30, 1980

^{*)} This research is partially supported by KOSEF Research Grant.

$$\bigcap_{\substack{II'\subset II\\II'\in \emptyset}} \ker \left[K_0(AII) \xrightarrow{i^*} K_0(AII') \right].$$

See Swan [5, p. 23].

3. Preliminary Results

PROPOSITION 3.1. Let R be an integral domain of characteristic 0, II a finite group of order n and $P \in \mathfrak{P}(RII)$, If no rational prime dividing n is a unit in R, then n divides rk_RP .

Proof: Let p be a rational prime dividing n and II_p be a Sylow p-subgroup of II. Then $P \in \mathfrak{P}(R(II_p))$. Hence if the theorem is true for p-groups it is true for finite groups. Thus we may assume that II is a p-group.

Since p is not a unit in R, there is a maximal ideal \mathfrak{M} in R with $p \in \mathfrak{M}$.

$$P/\mathfrak{M}P = (R/\mathfrak{M}) \otimes_R P \in \mathfrak{P}((R/\mathfrak{M})II)$$

implies that $P/\mathfrak{M}P$ is free over $(R/\mathfrak{M})II$ (Swan [6, p. 58]). Thus we have $\dim_{R/\mathfrak{M}}(P/\mathfrak{M}P) = n \cdot \operatorname{rk}_{R/\mathfrak{M}II}(P/\mathfrak{M}P)$.

But $\operatorname{rk}_R P = \operatorname{rk}_{R/\mathfrak{M}}(R/\mathfrak{M} \otimes_R P) = \dim_{R/\mathfrak{M}}((R/\mathfrak{M}) \otimes^R P) = \dim_{R/\mathfrak{M}}(P/\mathfrak{M} P)$ This completes the proof.

COROLLARY 3.2. Let R be an integral domain of characteristic 0 and II an finite abelian group such that no rational prime dividing the order of II is a unit in R. Then $P \in \mathfrak{P}(RII)$ has constant rank.

Proof: It is enough to show that RII has no idempotent other than 0 and 1. If e is an idempotent in RII, then we have the following direct sum $RII = RIIe \bigoplus RII(1-e)$.

Let P=RIIe, Q=RII(1-e). Then the order of II divides $\operatorname{rk}_R P$ and $\operatorname{rk}_R Q$ by Proposition 3.1. But

$$\operatorname{ord}(II) = \operatorname{rk}_R(RII) = \operatorname{rk}_R P + \operatorname{rk}_R Q.$$

Therefore, $rk_RP=0$ or $rk_RQ=0$. Hence e=0 or 1.

PROPOSITION 3.3. Let $f: R \to S$ be a homomorphism of commutative rings. If no idempotent in R is in the kernel of f, then $H(f): H(R) \to H(S)$ is injective (Swan [4, p. 138]).

Proof. Let g be an element of the kernel of H(f). Then for every ideal $q \in \operatorname{Spec}(S)$, $0 = H(f)(g)(q) = g(f^{-1}q)$. Thus it is enough to show that for each $p \in \operatorname{Spec}(R)$, g(p) = 0.

Let n be a rational integer with $g(\mathfrak{p})=n$. We need only to show that n=0. Let $X=g^{-1}(n)$, then X is open and closed in $\operatorname{Spec}(R)$ and so there is an idempotent e in R such that X=V(I), a Zariski closed set in $\operatorname{Spec}(R)$,

where I is an ideal in R generated by 1-e. By the given hypothesis we have $f(e) \neq 0$, thus 1-f(e) is a non-zero idempotent and so not a unit in S. Hence there is a maximal ideal \mathfrak{M} in S with $1-f(e) \in \mathfrak{M}$. Thus $1-e \in f^{-1}(\mathfrak{M})$ and so $f^{-1}(\mathfrak{M}) \in X$. Therefore $n=g(f^{-1}(\mathfrak{M}))=H(f)(g)(\mathfrak{M})$. But H(f)(g)=0. Hence n=0.

PROPOSITION 3. 4. Let A be a left regular ring and let T be a free abelian group or monoid. Then the canonical homomorphism $K_0(A) \to K_0(A[T])$ is an isomorphism (Bass [1, p. 636]).

4. Main Theorems

THEOREM 4.1. Let R be an integral domain of characteristic 0 with quotient field L and let S be a subring of L with $R \subset S \subset L$ and II a finite group of order n such that no prime dividing n is a unit in R. Furthermore, we assume:

- (1) For each cyclic subgroup II' of II every finitely generated projective SII'-module with constant rank is stably free.
- (2) $K_0(SII)$ is torsion free.

Then $P \in \mathfrak{P}(R II)$ implies $S \otimes_R P$ is stably free over S II.

Proof. Let $P \in \mathfrak{B}((RII))$. Then $\operatorname{rk}_R P = rn$ for some positive rational integer r by Proposition 3.1. We claim that $[S \otimes_R P] = r[SII]$ in $K_0(SII)$. We know that $n^2K_0(SII)^6 = 0$ (Swan[6. pp. 23, 25]). But, by the given hypothesis (2), $K_0(SII)$ is torsion free. Hence $K_0(SII)^6 = 0$. Therefore it is enough to show that $[S \otimes_R P] - r[SII] \in K_0(SII)^6$. For each cyclic subgroup II' of II, P has constant rank over RII' by Corollary 3.2. Let $RII' \to SII$ be the canonical ring homomorphism, $\mathfrak{q} \in \operatorname{Spec}(SII')$ and let $\mathfrak{p} = f^{-1}(\mathfrak{q})$. Then we have the following canonical homomorphism

$$(RII')_{\mathfrak{p}} \rightarrow (SII')_{\mathfrak{q}}$$

which is induced by f.

Note the following canonical isomorphisms

$$\begin{split} (SII')_{\mathfrak{q}} & \underset{SII'}{\otimes} (S \otimes_{R} P) \cong (SII')_{\mathfrak{q}} \underset{SII'}{\otimes} (SII' \underset{RII'}{\otimes} P) \\ & \cong (SII')_{\mathfrak{q}} \underset{(RII')_{\mathfrak{p}}}{\otimes} ((RII')_{\mathfrak{p}} \underset{RII'}{\otimes} P) \cong (SII')_{\mathfrak{q}} \underset{(RII')_{\mathfrak{p}}}{\otimes} F \end{split}$$

where F is a free $(RII')_{\mathfrak{p}}$ -module on $\operatorname{rk}_{RI'}{\mathfrak{p}}$ generators. This shows that $S \underset{R}{\otimes} P$ has constant rank over SII'. Therefore $[S \underset{R}{\otimes} P] = m \cdot [SII']$ in $K_0(SII')$, for some positive rational integer m, by the hypothesis (1). We will prove below that $m = (II : II') \cdot r$ where (II : III') is the index of II' in II. We have

 $[S \otimes_R P] = m \cdot [S II'] = r \cdot (II : II') \cdot [S II'] = r \cdot [S II] \quad \text{in } K_0(S II').$

Thus $[S \otimes_R P] - r[SII] \in K_0(SII)^e$. But $K_0(SII)^e = 0$. Hence $S \otimes P$ is stably free over SII. It now remains to be shown that $m = r \cdot (II : II')$. Since $[S \otimes_R P] = m \cdot [SII']$ in $K_0(SII')$, we have $[L \otimes_R P] = m \cdot [LII']$ in $K_0(LII')$ and so $[L \otimes_R P] = m \cdot \text{ord}(II') \cdot [L]$ in $K_0(L)$. But $\text{rk}_S P = r \cdot \text{ord}(II) = m \cdot \text{ord}(II')$, for $K_0(L)$ is torsion free. Therefore, we have $m = r \cdot (II : II')$.

THEOREM 4.2. Let R be an integral domain of characteristic 0 with quotient field L. Let II be a finite group such that no rational prime dividing the order of II is a unit in R. Let T be afree abelian group or monoid of finite rank. Then for every $P \in \mathbb{R}[R[T][II]]$, $L \otimes_R P$ is stably free over L[T][II].

Proof. Let m be the order of II and N be the set of non-negative rational integers. Since the following map $R[II][T] \to R[T][II]$,

$$\sum_{v \in \mathbb{N}^u} \left(\sum_{g \in \Pi} \tau_{vg} g \right) T^v \longrightarrow \sum_{g \in \Pi} \left(\sum_{V \in \mathbb{N}^u} \tau_{vg} T^v \right) g$$

is an isomorphism of rings, we may identify R[H][T] and R[T][H]. Since no rational prime dividing the order of H is a unit in R[T], we only need to show that L[T] satisfies the two conditions of Theorem 4.1. Since LH is semisimple, it is left regular. Therefore we have the following isomorphism

$$K_0(L[T][H]) = K_0(L[H][T]) \cong K_0(LH)$$

by Proposition 3.4. Furthermore, $K_0(LII)$ is torsion free. Now it is enough to show that for each abelian subgroup II' of II every finitely generated projective L[T][II']-module with constant rank is stably free.

From now on we may assume II is abelian. Let $f: LII \to LII[T]$ be the canonical injection. Then the following diagram of canonical homomorphisms

$$K_{0}(LII[T]) \xrightarrow{K_{0}(f)} K_{0}(LII)$$

$$\downarrow r \qquad \qquad \downarrow r$$

$$H(LII[T]) \longleftrightarrow H(LII)$$

is commutative (Swan [5, p. 138]). But H(f) is injective by Proposition 3.3. Furthermore, $r: K_0(LII) \to H(LII)$ is also injective. For an element x of the kernel of the map r, there are $P, F \in \mathfrak{P}(LII)$ such that F is free and x = [P] - [F] in $K_0(LII)$. Thus for each $\mathfrak{p} \in \operatorname{Spec}(LII)$, $r_P(\mathfrak{p}) = \operatorname{rk}_{LII}(F)$. Hence P has constant rank. Since LII is semisimple it is semilocal and P

is free. This implies that x = [P] - [F] = 0, and so the map r is injective. Now it is clear that

$$r: K_0(L\Pi[T]) \longrightarrow H(L\Pi[T])$$

is also injective. Let $P \in \mathfrak{P}(L\Pi \lceil T \rceil)$ with constant rank (Bourbaki $\lceil 2, \S 5.3, Prop. 5 \rceil$). Let F be a free $L\Pi \lceil T \rceil$ -module with $\operatorname{rk}_{L\Pi \lceil T \rceil} F = \operatorname{rk}_{L\Pi \lceil T \rceil} P$. Then $r_P = r_F$. But r is injective. Hence $\lceil P \rceil = \lceil F \rceil$ in $K_0(L\Pi \lceil T \rceil)$. This completes the proof.

References

- 1. Bass, H., Algebraic K-Theory, W. A. Benjamin, New York, 1968.
- 2. Bourbaki, N., Algebre Commutative, Herman, Paris, 1969.
- 3. Lam, T.Y., Serre's Conjecture, Springer Verlag, Berlin, 1978.
- 4. Sharma, P. K., Projective Modules oves Group Rings, J. Algebra 19 (1971), 303-314.
- 5. Swan, R. G., Algebraic K-Theory, Springer Verlag, Berlin, 1968.
- 6. Swan, R.G. K-Theory of Finite Groups and Orders, Springer Verlag, Berlin, 1970.

Korea University Jeonbug University Korea University Sogang University