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DETERMINANTS OF n-DIMENSIONAL MATRICES

By Jin B. Kim AnD JaMes E. Dowpy

1. Introduction

We denote by M,(p) the set of all pXpX -+ Xp=p" matrices over the real
numbers. Any matrix A in M, is called an n-dimensional matrix. If A is
a square matrix or an pXp matrix, then A is a 2-dimensional matrix.
There are many kinds of determinants (see [1] and [2] for definitions of
determinants) for n-dimensional matrices (where » is a positive integer grea-
ter than 2).

We first define a determinant det;(A) of an n-dimensional matrix 4 (for
7i=1,2,...,n) following the (Japanese language) paper [1] by R.Kaneiwa.
We also define a product AB of two 2m-dimensional matrices A and B in
M,,,(p). We prove that the associative law holds for the product AB in
Mo, (p). We obtain the identity matrix of M,,(»). We study elementary
properties of det;(A) for A€ M,(p), prove that det;(AB) #det;(A) det;(B)
and compute determinants of identity matrices as det;(/)=(p!)»"!, where
I is the identity matrix in M,,(p).

2. Definition of a determinant

In this section we give a definition of a determinant det;(A) of an »-
dimensional matrix A in M,(p), for j=1,2,...,n. We assume all matrices
are real matrices. Let p» be a positive integer greater than 1. S(p) denotes
the symmetric group on the set {1,2,...,2}. A matrix A is called an #-
dimensional (square) matrix over S(p) if A is an pXpX - Xp=p" matrix.
We denote by M,(p) the set of all n—dimensional matrices over S(p). (4 2
~dimensional square matrix A over S(p) is a pXp matrix and we call it
just a square matrix). We define a set $*(p) = {A=(Qd2--2,) : L,ES(P)}.
We define 72 for z&S(p) and A= (A1ds---4,) €ES*(p) by wA= (zA; TAs--7A,).
We define a relation R on S*(p) by AR p iff u=n A (for some z&S
(#), for 2, p€S»(p). It is clear that R is an equivalence relation on §* '
(p) and we define S”(p)/R==S.(p) as the set of all equivalence classes
defined by R. Let A&M,(p). An entry of A takes the form g, 4...;. Let
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”'—‘(%/ gﬁ::ﬁr)ES(P)- Then we can write z(s) =7. Letting 1= (Ady--4,) €
S*(p), define
al:,.rjl“l(i)=ah(1“2(1)"'1n(1)a11<2>12<2>'--A..(2>"‘dxlcpnch)...zncl,),
as a product of p entries of the matrix A.
LEMMA 1. Let [A]€S,(p) and let ASM,(p). Then ay=a,, for pc[A].

REMARK @;=a, means that a; and a, are identical when we apply the com-
mutativity of the real numbers.

Proof. We prove it by induction on n If =1, it is trivial. Assume
that we have proved it for <k, where £ is a fixed positive integer greater
than 1. Let n=F and p=(u s ... ) =w A= (A1 T Ap... A3) for pc[A].
Without loss of generality we can assume that z=(1 i) (a transposition and
i#1) and A;=1, the identity of the group S(p). We consider (z4;(1) = A,
(1)...x (1)) =K;. We see that z 2;(1) =i and by inductional assumption
we have that Ki= (i 4,(£) A3(¢) ...4;(¢)) for some t. We have z 4;(1) =4;(¥)
(/=2,3,...k) from which we get that 2;(:)=2;(#) and hence we have
D=8, DD 1D =8ud>- Now consider Ky= @ () nh (@) ... w4 () =
(1 w23 (?) wA3(3)...x2:(i)). By inductional assumption we can have that K,=
Q@) A3@) ... 4,(2)) from which we obtain that z;(;) =2;() and z1;() =
A;(1) =2;(¢) and hence we have that K= (4; (1) (1) ... 4(1)). Therefore we
have a;qy=a,;». Finally we consider K= (A (j) nla(4) ... w4 (5)) for
1#j#i. We can show that Ks=(21(7) 22(5)... 4:(j)) and hence a3, =a,;
and a;=a,. This proves the lemma.

By Lemma 1, we define ey as ap=a, for pc[1]. Now we define sign
;2D for [A1=S,(p). For j there exists u= (u;uz ... u,) €[] such that u;

=1, the identity of the group S(»). sign;([A]) = I (sign(u;)) is defined as

the product of all sign(x;).
We have now a definition of a determinant of A.

DerNITION 1. Let A=(a;;...1) EM,(p) be an n-dimensional matrix over
S(p) and A is a real matrix. We define
det;(A) =2 sign ([ADarx
LAes.(»
the summation being taken for all elements [1] in S,(p). We may call
det;(A) a j—determinant of an n-dimensional matrix.

Note that if A is a pXp matrix, then det;(a) =det,(4) =det(4).
|S| denotes the cardinality of a set S.
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LEMMA 2. Let A be as in Definition 1. Then det;(A) has (p!)* ! terms
in its expansion, j=1,2,...,n.

Proof. We can see that |S,(p)|=(p!)» L

3. Elementary properties of determinants

In this section we shall prove that if » is even, then det;(4)=det;(4)
for all j=2,3,...,n. In the case n=2m, we just write det(A) instead of det;
(A): We first construct an example.

ExamMpLE 1. Let A be a 3-dimensional matrix over S(3) and let

4111 G112 2113 Q211 @212 4213 4311 2312 9313
A=\a123 @122 @123 @221 A2 A223 @321 G322 Q323
Q131 4132 4133 Q231 2232 4233 @331 @332 @333
with a112=1, @123=4, @122=7, @11=6, @3>,="5, ap; and a333=3, and all
other entries of A are zero. Let [A]=[(II1(12)], [«]=[{I (12) I)] and
[v]=[((12) I1)]. Then we see that
signy[ A]=signo 1]=sign[« |=sign,[ u ]=sign,{ v]=signs[v]=—,
signg[ A]=sign,[u]=sign[v]=+, a1;1=6, ¢ (,1 =60 and a7 =42.
We can see that arz), ar, and ar,; are only non-zero terms of the expan-
sion of each det;4, det;A=—24, detpA=12 and det;A=—96.

THEOREM 1. Let n=2m (m=2) and let A= (ajj...t) EM,(p). Then
det; (A) =det;(A) for 7=2,3, ..., 1.

Proof. Let [2] be an arbitrary memberof S,(#) and consider sign; ([1]).
Without loss of generality we can assume that sign; (A1) =+, A= (4; 4s...4,)
and ;=1 We suppose that sign;([AN=— (G#1), 7d=1u=(uus...u,)) =

(zAy 7Az ... wA,) and u;=1I1 Note that sign, ([1]) =sign (/2)———1'_‘[1 (sign 4;) and

Sigﬂj ([A]) =sign(x) =—. From sign(u)=—, there are u;1y, #zcs +os Ur(2gtD)
such that sign(u;p)=— and sign(u,)=-+, for s#t() (=12, ...,2¢+1).
We can see that +=sign(d) =[] Gign 4) =] (sign=~w)) =11 Gsigm () =
sign(w) =—, a contradiction. This proves the theorem.

THEOREM 2. Let A=(a;j...z) EMyy+1(p). Then there are 2m+1 distinct
determinants det;(4), j=1,2,..., 2m+1.

Proof. For n=3, see Example 1. Let n=2m+1 (m=2). We need notat-
ions. Let V,(p) = {(f142 ... #x) : i; is a positive integer such that 1=<4;<p} and
d;; denotes the Krojecker’s delta (d;;=1 if i=j and d;;=0 if i#j). Let d;
=(di1di2"'din)evn(P)- In Vn(p)a define e(l) =dy+dyt--t+d.= (11---1),
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e(d)=ie(1)=(ii...i), e(li)=e(1)+d, and e(2:)=e(2)+d;, With these
vectors we define all non-zero entries of A as follows. a,;=1 for all
i23,8,0 =8 n=1 8a 1-10=8@ 1-1=V 2, <ot Bott 3-i+1=Ae@ n-i+D=V 1 »
vy Gea =0 =+ n (and all other entries of A are equal to 0). We
now define 1) =(4; A2 ... A,) €ES*(p) as follows: A,_;+;=(12), a transposi-
tion, and A,=1 (the identity) for t#n—i+1. Then we can see that

sign; (@D ={T Hizn it

With these data we can compute det;(A) and obtain that det;(4)=
—(n+1Dn/2+2(n—j+1). We can check that all det;(A) are distinct for j=
1,2, ..., n=2m+1. This proves the theorem.

We shall establish a theorem which is analogous to that if any two rows
of a matrix A are identical then det A=0 for a 2-dimensional matrix A.
To do this we introduce notations. We recall that V,(p)= {(G1iz...3,) 1 4;
are integers such that 1=<i;<p}. Letting A€ V,(p), a; denotes an entry of
A={(a;; ... ) eM,(p). (Note that we have used a; (A€5"(p)) as a product
of p entries of A in the section 2). We define A1(Gj)=(A14...4,) €V, (p)
by A;=j. Let A=(a;;....) EM,(p). Define A™;=(a;n ) as a submatrix of
A, and we call A7, the ith row (or face) of A in the m-—direction. For
simplicity, we often denote Al; by A;, and we may call 4; the ith row (or
face) of A.

THEOREM 3. Let A= (a;j...1) EM,(p).
(1) Let B=(b;j...n) EM,(p) be the matriz obiained from A by multiplying
row iy of A by scalar r (that is, B;=A; (i#i) and B;=rA;). Then
det jB = rdet jA.
(2) Let B be obtained from A by interchanging the ith row and the kth row
of A (that is, B;=A;, B,=A; (i#k) and B,=A, (i¥t#k) for B=
(BIBZ"'BP))' Then det; B=—det1 A

Proof. We omit the proof of (1) and we consider (2). Let [4] be an
arbitrary member of S,(») and without loss of generality we can assume
that 4 =1 for == A ... 4,). Define u=(u;u3... u,) by uy=( k) and u,=
A (¢#1). Then sign,([A]) = —sign;({«]) and we can show that

det;B= %, sign;([u)br=—_ 2 signy((ADapg=—det; A
[a] 8, (21 €3,

This proves the theorem.

4. A Product of two matrices
For A= (a;;...), B=(b;j...1s) EM;,(p), we define a product AB=C=
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(cij...1) of two matrices A and B as follows:
2
c,’liz..o,‘zm:—;lz (ailiz"'imt1tz'-'tm) (btltZ'"’mim+1’.m+2"'i2m)'
We can see that CE M, (p).

LEMMA 3. Let M,,(p) be the set of all 2m—dimensional matrices over S(p).
Then (AB)C=A(BC) for all A, B,C in My, (p). Thus Ms,(p) forms a
semigroup under the matriz product defined in the above.

We omit the proof of the lemma. We define a matrix.

DermviTION 2. Let A€ V,(p). For 1 we use a notation AA=(1 1) € V,,.(p)
as a vector with 2 components. Let B=(};;...;) be a matrix in M,,(p)
defined as follows: b5;,=1 for 1€V,(») and all other 3,=0 (€ V,,,(p)
and ##41). We denote this B by I and we call it the identity matrix of
the semigroup M., (2).

LEMMA 4. Let I be a matriz defined in Definition 2. Then
JIA=AI=A for all A€M, (p).

Proof. Let I=(b;j...)), A=(a;j...r) and AI=C=(c;;...;). Then

ci1i2"'i2m=§ (dilz‘z--'imtltz"'tm btltZ'"tmim+1im+2"'i2m)

=ai1i2" imim+1°**i2m bim+lim+2' i2mim+1ima2°* "im

:ailiz‘"imim+lim+2"’i2m’
since &;;=1 and 8,,=0(u+#v). We can prove that JA=A. This proves the
lemma.

Combining Lemmas 3 and 4 we have the following.

THEOREM 4. Mo, (p) is a semigroup with the identity I

THEOREM 5. Let A,BEM;,(p). Then det(AB) #det A det B.

Proof. Let I be the identity of M,(3). Then we can compute that det [

—6. This proves the theorem.
5. Determinants of identity matrices
We shall prove the following theorem.

THEOREM 6. Let I be the identity matrix of the semigroup My, (p). Then
det(I)=(pH= L

REMARK. In the proof of Theorem 5, we mentioned that, for JT&€M,(3),
det I=3 =6, which is a part of Theorem 6. For the identity matrix I in
M;(p), we know that det I=1, which is also a part of Theorem 6.
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Proof. Define Vi={(} A ... 2,) A€ V,(p) : 4=1}. Similarly, we define
Vi= {41 A2 -. Ap) =€ V. (p) : 1=4}. Let I={(a;j...;) be the identity matrix
of the semigroup M, (). Then any non-zero entry of I is of the form a;;
(A€ V,(»)). Define E(I) = {a;; : A€ V,(p)} as the set of all non-zero ent-
ries of I. Note that a;;=1. Define I;= {a;;€E(I) : i€ V,}. Then we can
see that |I|=p""1. We recall that e(1)=11...1) € V,.(p). Let B=aa....
@, be a term of the expansion of the det(Z). We can pick &, from [ and
we can assume that @;=a,qy.>- FOr a,1) o1y, we define Up= {1=(2 15 15 ...
A € Vs : ;22 and define L= {a;;€E(I) : A€ U,}. We can see that |I,]
=(p—1)"1. We can see that @, must be a member of I, We can assume
(without loss of generality) that @;=a,(».cz), where e(2)=2¢(1)=(2 2...2)
S5 Vm(l—(’) FOI‘ B=ae(1>e(1)a,(2)e(2)c’z’3...51,, we deﬁne U3= {/2= (2122...2,,,) (S5 V3 :
2;23, i#1} and define I;={a;; : A€ Us}. Note that |L|=(p—2)""1. We
see that @; belongs to I,. Inductively, for &;=a..p, we define Ujsi=
A= (A g---Am) € Vie1 t 42i+1} and define I;+1= {au€E(I) : A€ U;+y}. Then
we can show that |{[+1l=(p—i)"1 and &;+, must be a member of I;+.
Therefore we can say that the total number of such terms B=3z;a,... @,
in the expansion of the determinant of I is equal to (p!)™ ! because of that
every term B takes the -+ sign, that is, B=1. This proves the theorem.

PrOBLEM. Prove or disprove that det(AB)=c(det(A)) (det(B)), where ¢
is a constant and A, BEM,,(p).
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