DETERMINANTS OF *n*-DIMENSIONAL MATRICES

BY JIN B. KIM AND JAMES E. DOWDY

1. Introduction

We denote by $M_n(p)$ the set of all $p \times p \times \cdots \times p = p^n$ matrices over the real numbers. Any matrix A in M_n is called an n-dimensional matrix. If A is a square matrix or an $p \times p$ matrix, then A is a 2-dimensional matrix. There are many kinds of determinants (see [1] and [2] for definitions of determinants) for n-dimensional matrices (where n is a positive integer greater than 2).

We first define a determinant $\det_j(A)$ of an *n*-dimensional matrix A (for j=1,2,...,n) following the (Japanese language) paper [1] by R. Kaneiwa. We also define a product AB of two 2m-dimensional matrices A and B in $M_{2m}(p)$. We prove that the associative law holds for the product AB in $M_{2m}(p)$. We obtain the identity matrix of $M_{2m}(p)$. We study elementary properties of $\det_j(A)$ for $A \in M_n(p)$, prove that $\det_j(AB) \neq \det_j(A) \det_j(B)$ and compute determinants of identity matrices as $\det_j(I) = (p!)^{m-1}$, where I is the identity matrix in $M_{2m}(p)$.

2. Definition of a determinant

In this section we give a definition of a determinant $\det_j(A)$ of an n-dimensional matrix A in $M_n(p)$, for j=1,2,...,n. We assume all matrices are real matrices. Let p be a positive integer greater than 1. S(p) denotes the symmetric group on the set $\{1,2,...,n\}$. A matrix A is called an n-dimensional (square) matrix over S(p) if A is an $p \times p \times \cdots \times p = p^n$ matrix. We denote by $M_n(p)$ the set of all n-dimensional matrices over S(p). (A 2-dimensional square matrix A over S(p) is a $p \times p$ matrix and we call it just a square matrix). We define a set $S^n(p) = \{\lambda = (\lambda_1 \lambda_2 \cdots \lambda_n) : \lambda_i \in S(p)\}$. We define $\pi \lambda$ for $\pi \in S(p)$ and $\lambda = (\lambda_1 \lambda_2 \cdots \lambda_n) \in S^n(p)$ by $\pi \lambda = (\pi \lambda_1 \pi \lambda_2 \cdots \pi \lambda_n)$. We define a relation R on $S^n(p)$ by λR μ iff $\mu = \pi \lambda$ (for some $\pi \in S(p)$), for $\lambda, \mu \in S^n(p)$. It is clear that R is an equivalence relation on $S^n(p)$ and we define $S^n(p)/R \equiv S_n(p)$ as the set of all equivalence classes defined by R. Let $A \in M_n(p)$. An entry of A takes the form $a_{i_1 i_2 \cdots i_n}$. Let

 $\pi = \begin{pmatrix} 1 & 2 & \cdots & p \\ 1' & 2' & \cdots & p' \end{pmatrix} \in S(p)$. Then we can write $\pi(i) = i'$. Letting $\lambda = (\lambda_1 \lambda_2 \cdots \lambda_n) \in S^n(p)$, define

$$a_{\lambda} = \prod_{i=1}^{p} a_{\lambda(i)} = a_{\lambda_{1}(1)\lambda_{2}(1)}...\lambda_{n}(1)a_{\lambda_{1}(2)\lambda_{2}(2)}...\lambda_{n}(2)}...a_{\lambda_{1}(p)\lambda_{2}(p)}...\lambda_{n}(p),$$

as a product of p entries of the matrix A.

LEMMA 1. Let $[\lambda] \in S_n(p)$ and let $A \in M_n(p)$. Then $a_{\lambda} = a_{\mu}$, for $\mu \in [\lambda]$.

REMARK $a_{\lambda} = a_{\mu}$ means that a_{λ} and a_{μ} are identical when we apply the commutativity of the real numbers.

Proof. We prove it by induction on n. If n=1, it is trivial. Assume that we have proved it for n < k, where k is a fixed positive integer greater than 1. Let n=k and $\mu=(\mu_1\,\mu_2\,...\,\mu_k)=\pi\,\lambda=(\pi\,\lambda_1\,\pi\,\lambda_2...\pi\,\lambda_k)$ for $\mu\in[\lambda]$. Without loss of generality we can assume that $\pi=(1\ i)$ (a transposition and $i\neq 1$) and $\lambda_1=I$, the identity of the group S(p). We consider $(\pi\lambda_1(1)\,\pi\,\lambda_2(1)\,...\pi\,\lambda_k(1))=K_1$. We see that $\pi\,\lambda_1(1)=i$ and by inductional assumption we have that $K_1=(i\,\lambda_2(t)\,\lambda_3(t)\,...\lambda_k(t))$ for some t. We have $\pi\,\lambda_j(1)=\lambda_j(t)$ (j=2,3,...k) from which we get that $\lambda_j(i)=\lambda_j(t)$ and hence we have $a_{\lambda(i)}=a_{\lambda_1(i)\lambda_2(i)}...\lambda_k(i)=a_{\mu(1)}$. Now consider $K_2=(\pi\lambda_1(i)\,\pi\lambda_2(i)\,...\,\pi\lambda_k(i))=(1\,\pi\lambda_2(i)\,\pi\lambda_3(i)\,...\,\pi\lambda_k(i))$. By inductional assumption we can have that $K_2=(1\,\lambda_2(t)\,\lambda_3(t)\,...\,\lambda_k(t))$ from which we obtain that $\pi\lambda_j(i)=\lambda_j(t)$ and $\pi\lambda_j(i)=\lambda_j(1)=\lambda_j(t)$ and hence we have that $K_2=(\lambda_1(1)\,\lambda_2(1)\,...\,\lambda_k(1))$. Therefore we have $a_{\lambda(1)}=a_{\mu(j)}$. Finally we consider $K_3=(\pi\lambda_1(j)\,\pi\lambda_2(j)\,...\,\pi\lambda_k(j))$ for $1\neq j\neq i$. We can show that $K_3=(\lambda_1(j)\,\lambda_2(j)\,...\,\lambda_k(j))$ and hence $a_{\lambda(j)}=a_{\mu(j)}$ and $a_i=a_u$. This proves the lemma.

By Lemma 1, we define $a_{(\lambda)}$ as $a_{(\lambda)} = a_{\mu}$ for $\mu \in [\lambda]$. Now we define sign $j([\lambda])$ for $[\lambda] \in S_n(p)$. For j there exists $u = (u_1 u_2 \dots u_n) \in [\lambda]$ such that $u_j = I$, the identity of the group S(p). $\operatorname{sign}_j([\lambda]) = \prod_{i=1}^n (\operatorname{sign}(u_i))$ is defined as the product of all $\operatorname{sign}(u_i)$.

We have now a definition of a determinant of A.

DEFINITION 1. Let $A = (a_{ij}..._k) \in M_n(p)$ be an *n*-dimensional matrix over S(p) and A is a real matrix. We define

$$\det_{j}(A) = \sum \operatorname{sign} ([\lambda]) a_{[\lambda]}$$
$$[\lambda] \in S_{n}(p)$$

the summation being taken for all elements $[\lambda]$ in $S_n(p)$. We may call $\det_i(A)$ a j-determinant of an n-dimensional matrix.

Note that if A is a $p \times p$ matrix, then $\det_1(a) = \det_2(A) = \det(A)$. |S| denotes the cardinality of a set S.

LEMMA 2. Let A be as in Definition 1. Then $det_j(A)$ has $(p!)^{n-1}$ terms in its expansion, j=1, 2, ..., n.

Proof. We can see that $|S_n(p)| = (p!)^{n-1}$.

3. Elementary properties of determinants

In this section we shall prove that if n is even, then $\det_j(A) = \det_1(A)$ for all j=2, 3, ..., n. In the case n=2m, we just write $\det(A)$ instead of $\det_j(A)$: We first construct an example.

Example 1. Let A be a 3-dimensional matrix over S(3) and let

$$A = \begin{bmatrix} a_{111} \ a_{112} \ a_{113} \ a_{211} \ a_{212} \ a_{213} \ a_{311} \ a_{312} \ a_{313} \\ a_{123} \ a_{122} \ a_{123} \ a_{221} \ a_{222} \ a_{223} \ a_{321} \ a_{322} \ a_{323} \\ a_{131} \ a_{132} \ a_{133} \ a_{231} \ a_{232} \ a_{233} \ a_{233} \ a_{331} \ a_{332} \ a_{333} \end{bmatrix}$$

with $a_{112}=1$, $a_{123}=4$, $a_{122}=7$, $a_{211}=6$, $a_{212}=5$, a_{221} and $a_{333}=3$, and all other entries of A are zero. Let $[\lambda]=[(I\ (12)\],\ [u]=[(I\ (12)\ I)]$ and $[v]=[((12)\ I\ I)]$. Then we see that

$$\operatorname{sign}_1[\lambda] = \operatorname{sign}_2[\lambda] = \operatorname{sign}_1[u] = \operatorname{sign}_2[v] = \operatorname{sign}_2[v] = -$$
, $\operatorname{sign}_3[\lambda] = \operatorname{sign}_2[u] = \operatorname{sign}_1[v] = +$, $a_{[\lambda]} = 6$, $a_{[u]} = 60$ and $a_{[v]} = 42$.

We can see that $a_{[1]}$, $a_{[1]}$ and $a_{[v]}$ are only non-zero terms of the expansion of each $\det_i A$, $\det_1 A = -24$, $\det_2 A = 12$ and $\det_3 A = -96$.

THEOREM 1. Let
$$n=2m$$
 $(m \ge 2)$ and let $A=(a_{ij}..._k) \in M_n(p)$. Then $\det_1(A) = \det_j(A)$ for $j=2, 3, ..., n$.

Proof. Let $[\lambda]$ be an arbitrary member of $S_n(p)$ and consider $\operatorname{sign}_1([\lambda])$. Without loss of generality we can assume that $\operatorname{sign}_1([\lambda]) = +$, $\lambda = (\lambda_1 \lambda_2 ... \lambda_n)$ and $\lambda_1 = I$. We suppose that $\operatorname{sign}_j([\lambda]) = (j \neq 1)$, $\pi \lambda = u = (u_1 u_2 ... u_n) = (\pi \lambda_1 \pi \lambda_2 ... \pi \lambda_n)$ and $u_j = I$. Note that $\operatorname{sign}_1([\lambda]) = \operatorname{sign}(\lambda) = \prod_{i=1}^n (\operatorname{sign} \lambda_i)$ and $\operatorname{sign}_j([\lambda]) = \operatorname{sign}(u) = -$. From $\operatorname{sign}(u) = -$, there are $u_{t(1)}, u_{t(2)}, ..., u_{t(2q+1)}$ such that $\operatorname{sign}(u_{t(i)}) = -$ and $\operatorname{sign}(u_s) = +$, for $s \neq t(i)$ (i = 1, 2, ..., 2q+1). We can see that $+ = \operatorname{sign}(\lambda) = \prod_{i=1}^n (\operatorname{sign}(\lambda_i)) = \prod_{i=1}^n (\operatorname{sign}(\pi^{-1}u_i)) = \prod_{i=1}^n (\operatorname{sign}(u_i)) = \operatorname{sign}(u) = -$, a contradiction. This proves the theorem.

THEOREM 2. Let $A = (a_{ij}..._k) \in M_{2m+1}(p)$. Then there are 2m+1 distinct determinants $\det_j(A)$, j=1, 2, ..., 2m+1.

Proof. For n=3, see Example 1. Let n=2m+1 $(m\geq 2)$. We need notations. Let $V_n(p)=\{(i_1\,i_2\,...\,i_n):i_j\text{ is a positive integer such that }1\leq i_j\leq p\}$ and d_{ij} denotes the Krojecker's delta $(d_{ij}=1\text{ if }i=j\text{ and }d_{ij}=0\text{ if }i\neq j)$. Let $d_i=(d_{i1}d_{i2}...d_{in})\in V_n(p)$. In $V_n(p)$, define $e(1)=d_1+d_2+\cdots+d_n=(11...1)$,

 $e(i)=ie(1)=(i\ i...i), \quad e(1\ i)=e(1)+d_1 \quad \text{and} \quad e(2\ i)=e(2)+d_i.$ With these vectors we define all non-zero entries of A as follows. $a_{e(i)}=1$ for all $i\geq 3, \ a_{e(1\ n)}=a_{e(2\ n)}=1, \ a_{e(1\ n-1)}=a_{e(2\ n-1)}=\sqrt{2}, \dots, \ a_{e(1\ n-i+1)}=a_{e(2\ n-i+1)}=\sqrt{i}, \dots, \ a_{e(1\ 1)}=a_{e(2\ 2)}=\sqrt{n}$ (and all other entries of A are equal to 0). We now define $\lambda(i)=(\lambda_1\ \lambda_2\ \dots\ \lambda_n)\in S^n(p)$ as follows: $\lambda_{n-i+1}=(1\ 2), \ a$ transposition, and $\lambda_t=I$ (the identity) for $t\neq n-i+1$. Then we can see that

$$\operatorname{sign}_{j}(\lceil \lambda(i) \rceil) = \begin{cases} + & \text{if } i = n - j + 1, \\ - & \text{otherwise.} \end{cases}$$

With these data we can compute $\det_j(A)$ and obtain that $\det_j(A) = -(n+1)n/2 + 2(n-j+1)$. We can check that all $\det_j(A)$ are distinct for j = 1, 2, ..., n = 2m+1. This proves the theorem.

We shall establish a theorem which is analogous to that if any two rows of a matrix A are identical then $\det A=0$ for a 2-dimensional matrix A. To do this we introduce notations. We recall that $V_n(p)=\{(i_1\,i_2\,...\,i_n):i_j$ are integers such that $1\leq i_j\leq p\}$. Letting $\lambda\in V_n(p)$, a_λ denotes an entry of $A=(a_{ij}\,...\,_k)\in M_n(p)$. (Note that we have used a_λ $(\lambda\in S^n(p))$ as a product of p entries of A in the section 2). We define $\lambda(ij)=(\lambda_1\,\lambda_2\,...\,\lambda_n)\in V_n(p)$ by $\lambda_i=j$. Let $A=(a_{ij}...k)\in M_n(p)$. Define $A^m_i=(a_{\lambda(m\ i)})$ as a submatrix of A, and we call A^m_i the ith row (or face) of A in the m-direction. For simplicity, we often denote A^1_i by A_i , and we may call A_i the ith row (or face) of A.

THEOREM 3. Let $A = (a_{ij}...k) \in M_n(p)$.

- (1) Let $B = (b_{ij}..._k) \in M_n(p)$ be the matrix obtained from A by multiplying row i_0 of A by scalar r (that is, $B_i = A_i$ ($i \neq i_0$) and $B_{i_0} = rA_{i_0}$). Then $\det_i B = r \det_i A$.
- (2) Let B be obtained from A by interchanging the ith row and the kth row of A (that is, $B_i = A_k$, $B_k = A_i$ ($i \neq k$) and $B_t = A_t$ ($i \neq t \neq k$) for $B = (B_1 B_2 ... B_b)$. Then $\det_1 B = -\det_1 A$.

Proof. We omit the proof of (1) and we consider (2). Let $[\lambda]$ be an arbitrary member of $S_n(p)$ and without loss of generality we can assume that $\lambda_1=1$ for $\lambda=(\lambda_1 \lambda_2 \dots \lambda_n)$. Define $u=(u_1 u_2 \dots u_n)$ by $u_1=(i k)$ and $u_t=\lambda_t$ $(t\neq 1)$. Then $\mathrm{sign}_1([\lambda])=-\mathrm{sign}_1([u])$ and we can show that

$$\det_{\mathbf{1}} B = \sum_{[u]} \operatorname{sign}_{\mathbf{1}}([u]) b_{[u]} = -\sum_{[\lambda]} \operatorname{sign}_{\mathbf{1}}([\lambda]) a_{[\lambda]} = -\det_{\mathbf{1}} A$$

This proves the theorem.

4. A Product of two matrices

For $A = (a_{ij}...k)$, $B = (b_{ij}...k) \in M_{2m}(p)$, we define a product AB = C =

 $(c_{ij}...k)$ of two matrices A and B as follows:

$$c_{i_1 i_2 \cdots i_{2m}} = \sum_{i=1}^{p} \sum (a_{i_1 i_2 \cdots i_m t_1 t_2 \cdots t_m}) (b_{t_1 t_2 \cdots t_m i_{m+1} i_{m+2} \cdots i_{2m}}).$$

We can see that $C \in M_{2m}(p)$.

LEMMA 3. Let $M_{2m}(p)$ be the set of all 2m-dimensional matrices over S(p). Then (AB)C=A(BC) for all A, B, C in $M_{2m}(p)$. Thus $M_{2m}(p)$ forms a semigroup under the matrix product defined in the above.

We omit the proof of the lemma. We define a matrix.

DEFINITION 2. Let $\lambda \in V_m(p)$. For λ we use a notation $\lambda \lambda = (\lambda \lambda) \in V_{2m}(p)$ as a vector with 2m components. Let $B = (b_{ij}...k)$ be a matrix in $M_{2m}(p)$ defined as follows: $b_{\lambda\lambda} = 1$ for $\lambda \in V_m(p)$ and all other $b_u = 0$ ($u \in V_{2m}(p)$ and $u \neq \lambda \lambda$). We denote this B by I and we call it the identity matrix of the semigroup $M_{2m}(p)$.

LEMMA 4. Let I be a matrix defined in Definition 2. Then IA=AI=A for all $A\in M_{2m}(p)$.

Proof. Let
$$I = (b_{ij}...k)$$
, $A = (a_{ij}...k)$ and $AI = C = (c_{ij}...k)$. Then $c_{i_1i_2...i_{2m}} = \sum_{i_1} (a_{i_1i_2...i_{mt_1t_2}...t_m} b_{t_1t_2...t_m} b_{t_1t_2...t_mi_{m+1}i_{m+2}...i_{2m}})$

$$= a_{i_1i_2...i_{mi_{m+1}...i_{2m}}} b_{i_{m+1}i_{m+2}...i_{2m}i_{m+1}i_{m+2}...i_{2m}}$$

$$= a_{i_1i_2...i_{mi_{m+1}i_{m+2}...i_{2m}},$$

since $b_{\lambda\lambda}=1$ and $b_{uv}=0$ ($u\neq v$). We can prove that IA=A. This proves the lemma.

Combining Lemmas 3 and 4 we have the following.

THEOREM 4. $M_{2m}(p)$ is a semigroup with the identity I.

THEOREM 5. Let $A, B \in M_{2m}(p)$. Then $\det(AB) \neq \det A \det B$.

Proof. Let I be the identity of $M_4(3)$. Then we can compute that $\det I$ =6. This proves the theorem.

5. Determinants of identity matrices

We shall prove the following theorem.

THEOREM 6. Let I be the identity matrix of the semigroup $M_{2m}(p)$. Then $\det(I) = (p!)^{m-1}$.

REMARK. In the proof of Theorem 5, we mentioned that, for $I \in M_4(3)$, det I=3=6, which is a part of Theorem 6. For the identity matrix I in $M_2(p)$, we know that det I=1, which is also a part of Theorem 6.

Proof. Define $V_1 = \{(\lambda_1 \ \lambda_2 \dots \lambda_m) \ \lambda \in V_m(p) : \lambda_1 = 1\}$. Similarly, we define $V_i = \{(\lambda_1 \ \lambda_2 \dots \lambda_m) = \lambda \in V_m(p) : \lambda_1 = i\}$. Let $I = (a_{ij} \dots k)$ be the identity matrix of the semigroup $M_{2m}(p)$. Then any non-zero entry of I is of the form $a_{\lambda\lambda}$ $(\lambda \in V_m(p))$. Define $E(I) = \{a_{\lambda\lambda} : \lambda \in V_m(p)\}$ as the set of all non-zero entries of I. Note that $a_{\lambda\lambda}=1$. Define $I_1=\{a_{\lambda\lambda}\in E(I):\lambda\in V_1\}$. Then we can see that $|I_1| = p^{m-1}$. We recall that $e(1) = (1 \ 1 \dots 1) \in V_m(p)$. Let $B = \bar{a}_1 \bar{a}_2 \dots$ \bar{a}_{b} be a term of the expansion of the det(I). We can pick \bar{a}_{1} from I_{1} and we can assume that $\bar{a}_1 = a_{e(1)e(1)}$. For $a_{e(1)e(1)}$, we define $U_2 = \{\lambda = (2 \lambda_2 \lambda_3 ... a_{e(1)e(1)}, \lambda_{e(1)}, \lambda_{e(1)}\}$ $\lambda_m \in V_2 : \lambda_i \ge 2$ and define $I_2 = \{a_{\lambda\lambda} \in E(I) : \lambda \in U_2\}$. We can see that $|I_2|$ $=(p-1)^{m-1}$. We can see that \tilde{a}_2 must be a member of I_2 . We can assume (without loss of generality) that $\bar{a}_2 = a_{e(2)e(2)}$, where $e(2) = 2e(1) = (2 2 \dots 2)$ $\in V_m(p)$. For $B=a_{e(1)}e(1)a_{e(2)}e(2)\bar{a}_3...\bar{a}_p$, we define $U_3=\{\lambda=(\lambda_1\lambda_2...\lambda_m)\in V_3:$ $\lambda_i \ge 3$, $i \ne 1$ } and define $I_3 = \{a_{\lambda\lambda} : \lambda \in U_3\}$. Note that $|I_3| = (p-2)^{m-1}$. We see that \bar{a}_3 belongs to I_3 . Inductively, for $\bar{a}_i = a_{e(i)e(i)}$, we define $U_{i+1} =$ $\{\lambda = (\lambda_1 \lambda_2 \dots \lambda_m) \in V_{i+1} : \lambda_i \ge i+1\}$ and define $I_{i+1} = \{a_{\lambda\lambda} \in E(I) : \lambda \in U_{i+1}\}$. Then we can show that $|I_{i+1}| = (p-i)^{m-1}$ and \bar{a}_{i+1} must be a member of I_{i+1} . Therefore we can say that the total number of such terms $B = \bar{a}_1 \bar{a}_2 \dots \bar{a}_p$ in the expansion of the determinant of I is equal to $(p!)^{m-1}$ because of that every term B takes the + sign, that is, B=1. This proves the theorem.

PROBLEM. Prove or disprove that $\det(AB) = c(\det(A))(\det(B))$, where c is a constant and $A, B \in M_{2m}(p)$.

References

- R. Kaneiwa, N-dimensional matrices and nth order invariant forms (Japanese).
 Characterization of arithmetic functions (Proc. Sympos., Res. Inst. Math. Sci., Kyoto University, Kyoto, (1975). Surikaisekiken yusho Kokyuroku 274(1976), 83-97. MR 58-10955.
- 2. N. P. Sokolov, Spartial matrices and their applications (Russian), Gosudarstv. Izdat, Fiz. -Mat. Lit., Moscow, 1960, pp, 300 MR24-A122.

West Virginia University