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DETERMINANTS OF n-DIMENSIONAL MATRICES

By JIN B. KIM AND JAMES E. DOWDY

1. Introduction

We denote by M,,(p) the set of all pxpX .•. Xp=jY' matrices over the real
numbers. Any matrix A in M" is called an n-dimensional matrix. If A is
a square matrix or an pXp matrix, then A is a 2-dimensional matrix.
There are many kinds of determinants (see DJ and [2J for definitions of
determinants) for n-dimensional matrices (where n is a positive integer grea­
ter than 2).

We first define a determinant detj (A) of an n-dimensional matrix A (for
j=l, 2, ... , n) following the (Japanese language) paper DJ by R. Kaneiwa.
We also define a product AB of two 2m-dimensional matrices A and B in
M2m (P). We prove that the associative law holds for the product AB in
M2m (p). We obtain the identity matrix of M 2m (p). We study elementary
properties of detj(A) for AEM,,(P), prove that detj(AB) ::;t:detj(A) detj(B)
and compute determinants of identity matrices as detj(I) = (p!)m-l, where
I is the identity matrix in M zm (p) .

2. Definition of a determinant

In this section we give a definition of a determinant detj(A) of an n­
dimensional matrix A in M,,(p), for j=l, 2, ... , n. We assume all matrices
are real matrices. Let p be a positive integer greater than 1. S (p) denotes
the symmetric group on the set {I, 2, ..., n}. A matrix A is called an n­
dimensional (square) matrix over S(p) if A is an pXpX •.. Xp=p" matrix.
We denote by M,,(P) the set of all n-dimensional matrices over S(p). (A 2
-dimensional square matrix A over S(p) is a p Xp matrix and we call it
just a square matrix). We define a set S"(P) = {i!= (AIAZ···A,,) : AiES(P)}.
We define 1I:A for 1I:ES(p) and A= (AIA2···A,,) ESn(p) by 1I:A= (1t'Al1rA2···1t'AJ.
We define a relation R on S"(p) by A. R p iff P=1r A (for some 1t'ES
(p», for A,pES"(p). It is clear that R is an equivalence relation on S"_ .'
(p) and we define S"(p)/R::::::.8,,(p) as the set of all equivalence classes
defined by R. Let AEM,,(p). An entry of A takes the form ai

1
i2 ... in• Let
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1l:= (}, ~,::::,) ES(p). Then we can write 1l:(i) =i'. Letting A= (AIAZ···An) E

sn(p), define
p

a), =.n a),(;) =a),l (1)),2 Cl) ···),nCl)a),l (2)),2(2) ···),nC2) ···a),l CP)).2CP)·· ·),nCp),
1=1

as a product of P entries of the matrix A.

LEMMA 1. Let [AJESn(p) and let AEMn(p). Then a),=ap., for JlE[A].

REMARK a),=ap. means that a), and ap' are identical when we apply the com­
mutativity of the real numbers.

Proof. We prove it by induction on n. If n=I, it is trivial. Assume
that we have proved it for n<k, where k is a fixed positive integer greater
than 1. Let n=k and Jl= (JllltZ ••. Jlk) =11: A= (1l: Al 1l: A2•..1l: Ak) for JlE[AJ.
Without loss of generality we can assume that 1l:= (1 i) (a transposition and
i=t'=I) and Al=1, the identity of the group S(p). We consider (1l:Al(I) 1l: Az
(1) ...1l: Ak(l)) =K1• We see that 1l: Al (1) =i and by inductional assumption
we have that K 1= (iA2(t)A3(t) .•.Ak(t)) for some t. We have 1l: Aj(I) =Aj(t)
U=2, 3, ...k) from which we get that Aj(i) =Aj(t) and hence we have
a),(;) =a).l (;)),2(;)·· ·).k(;) =ap.(l). Now consider Kz = (1l:Al (i) 1l:A2(i) ... 1l:Ak (i)) =
(I1l:A2 (i) 1l:A3(i) . ..11:Ak(i)). By inductional assumption we can have that K 2=
(1 )'z(t) ,het) ••• Ak(t)) from which we obtain that 1l:).j(i) =Aj(t) and 1l:Aj(i) =
A/I) =Aj(t) and hence we have that K z= (AI (1) Az(1) .•. Ak(I)). Therefore we
have a),(l)=ap.(i). Finally we consider K 3=(1l:Al(j) 1l:A2U) ••. 1l:AkU)) for
I=t'=j=t'=i. We can show that K 3=(J'1(j) A2U) •.. AkU)) and hence a)'Cj)=ap.(j)
and a;.=ap.. This proves the lemma.

By Lemma 1, we define am as aw=ap. for JlE[AJ. Now we define sign
j([itJ) for [AJESn(p). For j there exists u= (Ul Uz ••• un) E[;(J such that Uj

=1, the identity of the group S(p). signj([AJ) = r'i (sign (Uj)) is defined as
;=1

the product of all sign (Ui)'
We have now a definition of a determinant of A.

DEFINITION 1. Let A= (aU ..•k) EMn(p) be an n-dimensional matrix over
S(p) and A is a real matrix. We define

detj (A) = 1:: sign ([AJ) a [}.]

[A] ESn (p)
the summation being taken for all elements [A] in Sn(P). We may call
detj (A) a j-determinant of an n-dimensional matrix.

Note that if A is a pXp matrix, then detl(a) =det2(A) =det(A).
IS I denotes the cardinality of a set S.
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LEMMA 2. Let A be as in Definition 1. Then detj(A) has (p!)n-l terms
in its expansion, j=l, 2, ... , n.

Proof. We can see that !Sn(P) 1= (p!)n-l.

3. Elementary properties of determinants

In this section we shall prove that if n is even, then detj (A) =detl (A)
for all j=2, 3, ..., n. In the case n=2m, we just write det(A) instead of detj
(A) : We first construct an example.

EXAMPLE 1. Let A be a 3-dimensional matrix over S (3) and let

[

aU1 aU2 aU3 a2l1 a212 a213 a3U a312 a313]
A = a123 a122 a123 a221 a222 a223 a321 a322 a323

a131 a132 a133 a231 a232 a233 a331 a332 a333

with aU2=1, aI23=4, aI22=7, a2u=6, a212=5, a221 and a333=3, and all
other entries of A are zero. Let [AJ=[(I I (12)J, [u]=[(I (12) I)] and
[vJ=[«12) I 1)J. Then we see that

signlCAJ=Sign2CAJ=SignlCu] =Sign3CU]=Sign2[V]=Sign3CV]= -,
sign3CA]=sign2Cu]=Signl[V]= +, a EA] =6, a [Il] =60 and a Cv] =42.

We can see that a L<J, a [Il] and a [v] are only non-zero terms of the expan­
sion of each detjA, det1A=-24, det2A=12 and det3A=-96.

THEOREM 1. Let n=2m (m;;:;; 2) and let A= (aij ...k;) EMn(p). Then
detl (A) =detj(A) for j=2, 3, ..., n.

Proof. Let [A] be an arbitrary memberof Sn(P) and consider Sign1 (CA]).
Without loss of generality we can assume that Signl (CA]) =+, A= (AI A2...An)

and Al=1. We suppose that signj(CA]) =- U=t=l), 1t'A = U = (Ul U2",Un) =

(n-AI n-A2 '" n-An) and Uj= 1. Note that Signl (CA]) = sign (A) = fI (sign Ai) and
;=1

signj (Cil]) = sign (u) = -. From sign (u) = -, there are Ut Cl) , Ut(2), , Ut(2q+l)
such that sign(utw)=- and sign(us)=+, for s=t=t(i) (i=1,2, ,2q+1).

We can see that + = sign (il) = Ii (sign Ai) = Ii (sign (n--IUi» = n (sign (Ui) ) =
;=1 ;=1

sign (u) = -, a contradiction. This proves the theorem.

THEOREM 2. Let A= (aij ...k;) EM2m+1(p). Then there are 2m+ 1 distinct
determinants detj(A), j=l, 2, ..., 2m+ 1-

Proof. For n=3, see Example 1. Let n=2m+1 (m;;:;;2). We need notat­
ions. Let Vn(P) = {(il i2 ... in) : ij is a positive integer such that 1~ ij ~p} and
dij denotes the Krojecker's delta (dij=l if i=j and dij=O if i=t=j). Let d i
= (dildi2 .•.din) E Vn(p). In Vn(p), define e(l) =dl +d2+"'+dn= (11 ...1),
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e(i) =ie(l) = (i i ...i), eel i) =e(l) +d1 and e(2 i) =e(2) +d,. With these
vectors we define all non-zero entries of A as follows. ae(j) = 1 for all
i;;;;;3, aeCl n)=aeC2 n)=l, aeCl n-l)=aeC2 n-1)= -viz, ..., aeCl n-i+V=aeC2 n-i+V= -vii,
..•, aeCl 1) =aeC2 2) = -vir; (and all other entries of A are equal to 0). We
now define A(i) = 01 A2 '" An) Esn(p) as follows: An-,+I= (12), a transposi­
tion, and At = I (the identity) for t '*n - i+1. Then we can see that

sign.([A(i)]) = {+ if i=n:-j+ 1,
J - otherwIse.

With these data we can compute detj(A) and obtain that detj(A) =
- (n+1)n/2+2(n-j+1). We can check that all detj(A) are distinct for j=
1,2, ..., n=2m+1. This proves the theorem.

We shall establish a theorem which is analogous to that if any two rows
of a matrix A are identical then det A = 0 for a 2-dimensional matrix A.
To do this we introduce notations. We recall that Vn(p) = {(il i2 ••• in) : ij

are integers such that l~ij;;;;p}, Letting AE Vn(p), aA denotes an entry of
A= (aij ... k) EMn(p). (Note that we have used aA (AESn(p» as a product
of p entries of A in the section 2). We define A(i j) = (AI A2 ... An) E Vn(p)
by Ai=j. Let A= (aij ...k) EMn(p). Define Ami= (aACm i) as a submatrix of
A, and we call Ami the ith row (or face) of A in the m-direction. For
simplicity, we often denote Ali by Ai' and we may call Ai the ith row (or
face) of A.

THEOREM 3. Let A= (a,j"'k) EMn(p).
(1) Let B= (bij ... k) EMn(P) be the matrix obtained from A by multiplying

row io of A by scalar r (that is, Bi=Ai (io/=io) and B'o=rA,o)' Then
detjB=rdetjA.

(2) Let B be obtained from A by interchanging the ith row and the kth row
of A (that is, B,=Ak> Bk=Ai (io/=k) and Bt=At Ci=l=-t=l=-k) for B=
(B l B2...B p». Then detl B= -detl A.

Proof. We omit the proof of (1) and we consider (2). Let [A] be an
arbitrary member of Sn(P) and without loss of generality we can assume
that Al = 1 for A= (AI A2 ... An)' Define u= (Ul U2 ... un) by Ul = (i k) and Ut=
At (t=l=-l). Then Signl([;(]) =-Signl([U]) and we can show that

det1B= L: Signl ([u])b ell] = - L: Signl ([A]) a rAJ = -det1 A
ell] €;S"CP) [A] ES"CP)

This proves the theorem.

4. A Product of two matrices

For A= (aij···k) , B= (b,j"'k) EM2m (p), we define a product AB=C=
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(Cij."k) of two matrices A and B as follows:
p

CiIiz .. 'izm= ~ (aiIiz' "imtItz·· .tm) (btItz" ·tmim+Iim+Z··· iz ).
ti=l m

We can see that CEM2m (p).

LEMMA 3. Let M2m (p) be the set of all 2m-dimensional matrices over S(p).
Then (AB)C=A(BC) for all A, B, C in M2m (p). Thus M 2m (p) forms a
semigroup under the matrix product defined in the above.

We omit the proof of the lemma. We define a matrix.

DEFINITION 2. Let AE Vm(p). For A we use a notation AA= (A A) E V2m (p)
as a vector with 2m components. Let B= (bij ...k) be a matrix in M2m (p)
defined as follows: b.u =l for AE Vm(p) and all other bu=O (uE V2m (p)
and u:::/= AA) . We denote this B by 1 and we call it the identity matrix of
the semigroup M 2m (p).

LEMMA 4. Let 1 be a matrix defined in Definition 2. Then
1A=AI=A for all AEM2m CP).

Proof. Let 1= (bij ...k), A= (aU.•.k) and A1=C= (Cij ...k). Then

Ci1iz" ·izm= 1:; (ai1iz··· imt1tz·· ·tm btItz· ..tmim+1im+z·· 'iz m),.
=ait i2"·" imitn+l """ i2m him+lim+2""" i2mim+lim+2""" i2m

=aiti2""" imi m+lim+2""" i2m'

since bu=l and buv=O(u:::/=v). We can prove that IA=A. This proves the
lemma.

Combining Lemmas 3 and 4 we have the following.

THEOREM 4. Mzm(p) is a semigroup with the identity 1.

THEOREM 5. Let A, BEM2m (p). Then det(AB) :::/=det A det B.

Proof. Let I be the identity of M 4 (3). Then we can compute that det 1
=6. This proves the theorem.

5. Determinants of identity matrices

We shall prove the following theorem.

THEOREM 6. Let 1 be the identity matrix of the semigroup M 2m (p). Then
det(I) = (p!)m-l.

REMARK. In the proof of Theorem 5, we mentioned that, for lE M4 (3),
det 1=3 =6, which is a part of Theorem 6. For the identity matrix 1 in
M 2 (p), we know that det 1=1, which is also a part of Theorem 6.
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Proof. Define Vl= {(AI A2 '" Am)AE Vm(p) : A1=1}. Similarly, we define
Vi= {(AI A2 '" Am) =i1E: Vm(p) : Al=i}. Let 1= (aij ... k) be the identity matrix
of the semigroup M2m (p). Then any non-zero entry of I is of the form an
(AE Vm(p». Define E(I) = {a.u : i/.E Vm(p)} as the set of all non-zero ent­
ries of I. Note that all=l. Define 11= {auEE(I) : i/.E:Vl}. Then we can
see that IId=pm - l . We recall that e(l)=(ll. .. l)EVm(p). Let B=a1a2'"
ap be a term of the expansion of the det (1) . We can pick a1 from 11 and
we can assume that al =ae(l)e(l)- For ae(l) e(l), we define U2= {i1= (2 A2 A3 '"
Am)E:V2 : Ai~2} and define 12= {allEE(I) : AEU2}.· We can see that 112 \

= (p_l)m-l. We can see that a2 must be a member of 12, We can assume
(without loss of generality) that a2=ae(2)e(2), where e(2) =2e(1) = (2 2 ... 2)
E: Vm(p). For B=ae(l)eCDaeC2)eC2)a3 ...ap, we define U3= {,.l= (,."/1,.(2 ...Am) E: V3 :
.ili~3, i:;i:l} and define 13= {a.lA : AE U3}. Note that \131 = (p_2)m-1. We
see that a3 belongs to 13• Inductively, for ai=aeWeW, we define Ui+1=
{A= (AIA2.··,.lm) E Vi+l : Ai~i+l} and define 1i +l = {alAEE(I) : ,.lE Ui+1}. Then

we can show that IIi+d=(p-i)m-l and ai+1 must be a member of Ii+1.
Therefore we can say that the total number of such terms B=a1 a2 '" ap
in the expansion of the determinant of I is equal to (p!)m-l because of that
every term B takes the + sign, that is, B= 1. This proves the theorem.

PROBLEM. Prove or disprove that det(AB) =c(det(A» (det(B», where c
is a constant and A, BE M 2m (p) .
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