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ON GENERAL CONTRACTIVE TYPE CONDITIONS

By SeHIE PARK¥

1. Introduction

The well-known Banach contraction principle says that the Picard iteration
of a point under a contraction of a complete metric space converges to its
unique fixed point. A number of generalizations of this principle have
appeared. A comparative study of these has been made by Rhoades [307].

However, recent works of Meir and Keeler [217], Danes 7], Husain and
Sehgal [137, [14], Hegediis [117], Hegediis and Szildgyi [127], and Kasahara
[19] have extended the principle to wider classes of maps than those covered
in [30]. These authors have defined contractive type conditions of the form

d( fz, fy)<diam (O(z) UO(y))
where f is a selfmap of a metric space (X, d), z, y€X, z+#y, diam O(a) oo,
diam O(y) <co, and O(z)= {f*z|n<Sw}, where w=1{0,1,2, ...}, and have
obtained interesting fixed point theorems.

In the present paper, we shall update Rhodes’ comparative study of vari-
ous results to the Banach contraction principle [307] and obtain some common
extension of recent results along similar lines.

Section 2 deals with definitions and basic properties of generalized con-
tractive type conditions. In Section 3, we extend some known fixed point
theorems, and, in Section 4, we give an extension of a result in Section 3
to common fixed points of commuting selfmaps. In the final section, we
indicate some open questions.

2. General contractive type conditions

Let f be a selfmap of a metric space (X, d). Given z€X, let O(z) = {frx|
n€w} and O(x) be its closure. A point z€X is said to be regular for £ if
diam O(2) <<co [19]. Given z,y€X, let

m(zx, y) =max {d(z, y), d(z, fzr), d(y,fy), d(x, fy), d(y, fx)},
and
0 (z, y) =diam {O(x) UO(»)}
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whenever z and y are regular.
We list contractive type conditions to be considered, some of which are

known and some of which are new.

(A) For any z,yeX, z+y,

(Ad) d(fx, fy)<d(z,y) (Edelstein [97]).
(Am) d{fz, fy)<m(z,y) (Rhoades [307).
(Ad) if z and y are regular,
d(fz, fy)<d(z, ).
(B) Given &0, there exists 6>>0 such that for any z,y€X,
(Bd) e<d(x,y)<e-+0o implies d(fz, fy)<le (Meir-Keeler [217).

(Bm) e<m(z,y)<e+d implies d(fx, fy)<e.
(Bd) e<d(x, y)<le+o implies d(fz, fy) e
(C) Given £>0, there exist <¢ and 8,>0 such that for any z,yeX,
(Cd) e<d(x,y)<le+0, implies d(fz, fy) <.
(Cm) e<m(x, y)<e-+0y implies d{ fz, fy) <&,
(Co) e<d(x, y)<let+dy implies d(fz,fy) <ey,  (Hegediis-Szilagyi [12]).
(D) There exists a nondecreasing right continuous function ¢: [0, ) —
[0, o) such that ¢(z) <t for £>0 and, for any z,yEX,
(Dd) d(fz, fy) <d(d(z, y)) (Browder [31).
(Dm) d(fz, fy) <o (m(z, ¥)) (Danes [71).
(Do) d(fz,fy)<¢(d(x,y)) if z,y are regular (Kasahara [197]).
(E) There exists a<[0, 1) such that for any z, y&X,

(Ed) d(fz, fy)<ad(z,y) (Banach).
(Em) d(fz, fy)<am(z,y) (Ciric (5], Massa [20]).
(Ed) d(fz, fy)<ad(z,y) if z,y are regular (Hegediis [117).

Note that some variants of the conditions (Dm) and (Cm) appear in
Husain-Sehgal [137, [14], Kasahara [18], and Park [25], [26].

If all points in X are regular for f, then we have the following diagram
of implications:

(Ad) &= (Bd) <= (Cd)<= (Dd) <= (Ed)

l

(AE)«‘—-—— (Iﬁn)@: (Clnll) — (Dm) & (Em)
(Ad) <= (Bd) &= (Cd) <= (Do) <= (Ed)
It is interesting to note that the chronological order of the conditions is

(Ed), (Ad), (Dd), (Bd), (Em), (Dm), (Am), (E), (D3), (C3), and the others

are newly given.



On general contractive type conditions 133

We prove only the nontrivial implications (Cd) <= (Dd), (Cm) <= (Dm),
and (Cd) <= (Dd).

(Co) <= (Dd). Let 0. Since ¢(¢) <e, we can choose an g, satisfying
¢ (e) <ep<le. Since ¢ is nondecreasing and right continuous, there exists a
3o>0 such that ¢=[¢, e+, ] implies ¢(¢) <g. Suppose e<d(z, y) <e+0,. Then
we have d(fz, fv) <é(0(z, »)) <s.

Similar proofs can be applied for (Cm) <= (Dm) and (Cd) <= (Dd).

Counterexamples. Showing (Cd) =+>(Dd) is given by Hegediis-Szilagyi
[12], (Ed)=>(Em) by Hegediis [11], (Dd)=—=>(Ed) by Kasahara [19],
(Dd) ==>(Ed) and (Em)=#>(Ed) by many authors, and (Bd)=%>(Cd) by
Meir-Keeler [21].

Meir-Keeler [217 noted that if X is compact then (Ad) < (Bd). We can
show that (Am) <> (Bm) and (Ad) <= (Bd) whenever X is compact and f

is continuous.

(Ad) = (Bd). We consider inf.cse,y [0(z,y) —d(fz, fy)]=06(), say.
Since for each i,j€w, d(fiz, fiy) is continuous at (z, y) €X XX, we know
that 6(z, y) =sup;,; d(fiz, fiy) is lower semicontinuous ([8], p.85). There-
fore, d(z, y) —d(fz,fy) must attain its minimum at some point (a, d) in the
compact space XXX ([8], p.227), i.e., 0(e)=d(a, b) —d(fa, fb).

If a=b, then 6(c)=6(a, b) >¢c. If a#b, then, from (Ad), d(fa, fb)<
d(a, b), and again d(¢)>0.

Now suppose e<d(z, y)<e+d(e). Then d(z,y) —d(fx, fy)=>0(c) implies
d(fz, fy)+0(e) <6(x, y)<e+d(e), which in turn implies that d( fz, fy) e

Similarly, we can show that (Am)=—>(Bm).

Furthermore, if f is a continuous compact map satisfying the condition
(Am), then there exists an equivalent metric for X relative to which f
satisfies (Ed) (See [15],[ 241, [31]). This will be extended to (Ad) in the

next section.

We list some simple observations for these general contractive type condi-
tions:

(I) I f satisfies any contractive type condition in the list (A) to (E) and
f has a fixed point, then it is unique.

(IT) If there exists a positive integer % such that f* satisfies any condition
in the list (A) to (E) and f* has a fixed point, then it is the unique fixed
point of f.

(IIT) Any map satisfying (Ad) is uniformly continuous.

(IV) For any map f satisfying (Bd) or (Em) and for any z=X, the
Picard iteration {f*z} ,c, is Cauchy (Meir-Keeler [217, Cirié [5]). For any
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map f satisfying (C) and for any regular z€X, {f"a} is Cauchy (Hege-
diis-Szilagyi [127]).

(V) A selfmap f of a metric space X is said to have diminishing orbital
diameters if, for any z€ X, diam O(z) satisfies the property that 0 <diam
O(z) oo implies lim, O(frz) <diam O(z) [2].

Meir-Keeler [217] have shown that condition (Bd) implies that f has
diminishing orbital diameters. We will later note that the condition (Cd)
implies the same property (Lemma (i) to Theorem 2(Cd)). Hence, by a
result of Ng [23], a map f satisfying (C) is non-periodic; that is, every
periodic point is a fixed point.

(IV) Hegediis [11] showed that if a selfmap f of a complete metric space
X, all of whose points are regular, satisfies the condition (Ed), then f is a
contraction type map in the sense of Ciri¢ [6]; that is, f satisfies all con-
clusions of the Banach contraction principle. Hegediis-Szilagyi [12] also obta-
ined some equivalent conditions to each in (D) and (C) (Cf. [4],[7],[14],

[190).

A unified approach to fixed point theorems of maps satisfying the condi-
tions (Dm) or (Ad) is given in [26].

3. Fixed Point Theorems

Edelstein [9] showed that if a selfmap f satisfies (Ad) and if, for some
u€X, O(u) has a cluster point p€X, then p is the unique fixed point of
f and f*u—p. Rhoades [307] raised the question: if a continuous selfmap f
satisfies (Am), and if, for some w€X, O(x) has a cluster point, does f
possess a fixed point? Taylor [32] has constructed an example to show that
the answer is in the negative. If, however, one adds the hypothesis that f
is compact, then the answer is in the affirmative, as shown in [31]. In
order to extend this result to a map satisfying (A8), we need the following.

Let M(X) denote the set of all metrics on X that are topologically equi-
valent to d for a given metric space (X, d).

THEOREM (Meyers [221). Let f be a continuous selfmap of a metric space
X with the following properties:

1) f has a unique fized point p=X.

(2) For any z€X, fra—p.

(8) There exists an open neighborhood U of p with the property that given
any open set V containing p there exists an integer ny such that n_>ng implies
frUCV. Then for any a<(0,1) there exists a metric pc M(X) relative to
which f satisfies the condition (Ed).
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We follow the method of Janos [15] and obtain

THEOREM 1. Let f be a continuous compact selfmap of a meiric space X
satisfying (AB). Then f has a unique fixed point, and furthermore, for any
a< (0,1) there exists a metric p in M(X) relative to which f satisfies (Ed)
with the Lipschitz constant a.

Proof. There exists a compact subset Y of X containing fX. Then fYCY
and, hence, A= N2, f*Y is a nonempty compact f-invariant subset of X
which is mapped by f onto itself. We claim that A is a singleton consisting
of the unique fixed point p of f. If not, then diam A>>0. Since A is com-
pact, there exist z,ySA with d(z, y)=diam 4, and, since f maps A onto
itself, there exist z’, ¥ €A with z=fx", y=fy’. Since f satisfies (Ad) we
have

diam A=d(z, y) =d(f2', fy')<é(a', y') <diam A4,
a contradiction. Therefore condition (1) of Meyers’ theorem holds. Condition
(2) follows from the fact that XY for any n. For (3), take U=X and
observe that f#+1Xc f*X, whose diameter diminishes to zero as n—cc. Thus
f*X squeezes into any neighborhood of » and the proof is complete.
Now we prove a theorem for a map satisfying condition (C3).

THEOREM 2 (CO). Let f be a selfmap of a metric space X. Suppose there
exists a regular point uSX such that

(1) O(w) has a regular cluster point p<X, and

(2) the condition (C8) holds on O(u) UO(p).
Then f has a unique fized point p in O(u) and fru—p.

LEMMA. Suppose the condition (C3) holds on O(xz) for some regular point
z€X. Let dy=d,(z) denote diam O( ftz). Then

@G) lim, 4,=0.

(ii) If frx=lim, f*z for some k€ w, then dy=dy+;.

Proof. (1) Since dp+;<d, for all ncw, {d,} converges to some &>0.
Suppose ¢>0. Then there exists an g<(¢ and a 6,>0 satisfying (C5). Choose
k€ w such that e<d,<e+d;. Then for m>n>% we have

e<d,=0(fmz, frz) <d,<e+d,,
which implies d(f™+1z, f#+1z) <e, This leads to dj+;<ey<le, a contradiction.
Therefore, e=0 and {f”z} is Cauchy.
(i) Suppose d;#dp+;. Then we have dj+;<d;. Since
dy=max {sup {d(f™z, fiz)|m>k},dpn},
we have
dy=sup {d(fmz, frx)|m>k}.
For any n>>m>>k, we have
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d(ftz, f=z) <d(frz, fz+d(f*z, fmz)
—éd(kaa fﬁx) +dﬁ+1-
By letting n—co, we have d(f*z, f™z) <di+;. This shows that dp<dj+y,
a contradiction.

Proof of Theorem 2(C3). By (1) and the Lemma (i), f*u—p. Let ¢,=
sup{d(f™u, f™p)|m=>n}. Then{c,} is nonincreasing and ¢,—¢ for some ¢>0.
Suppose €>0. Then there exists an ¢<¢ and a J,>>0 satisfying (Cé) on
O@x) UO(p). Since ¢, ¢, d,(x) |0, and d,(p) | 0, there exists a k€ w such
that »>% implies

calet00/3, dn(u)<l0o/3, d.(p)<0o/3.
Since
Escnga(f"u’ f"?) gdn(u)"{_cn—{_dn(p) e+ 0o,

it follows that

d(fn+1u’ fn+1p) £50<€ ;
that is, c¢z+;<go<le, a contradiction. Therefore, e=0. Hence, we have
d(f*u, frp)—0 as n—oo, and f*p—p. By the Lemma (ii) with (=0, we
have do( p)=d;(p). Suppose do(p)=d:(p)=...=dp( p)>ds+1(p) for some
£>1. Then, we have d;(p)= sup{d(fmp, f*p)Im>k} as in the proof of
Lemma (ii). For e=d,(p) there exist g<le and d,>0 satisfying (Cd) on
O(p). Hence, for any m>>k,

e=0(f¥1p, fr7lp)=dp1(p)<et+do
implies

d(ka, fmp) SSO:

that is, d;(p) <eg<le, a contradiction. Therefore, dy(p)=d;(p) for all k&
o, and we have dy(p) =0 by Lemma (i). This shows that fp=p. The
uniqueness is clear.

From Theorem 2(Cé), we obtain

THEOREM 3(C3). Let f be a selfmap of a complete metric space X. If
(Cd) holds for all regular points z,y<X, then f has a unique fixed point p
€X, and frx—p for any regular point z<=X.

Proof. Let zy be a regular point of X. Then, from the Lemma (ii),
{frxo} 4o 1s a Cauchy sequence, and hence converges to some p&X. The
conclusion follows from Theorem 2(Cd).

Theorem 3(Cd) is given by Hegediis-Szildgyi [12]. An easy example
showing that Theorem 2(Cd) properly extends Theorem 3(Cd) is given in
[25],[19].

Replacing the condition (C3) by other conditions we can deduce many
consequences. Actually, Theorems 3(Cd) and 3(EJ) are given by Hegediis—
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Szilagyi [137] and Hegediis [11] respectively, Theorems 2(Dé) and 3(Dd)
by Kasahara [19], Theorem 3(C3) by Boyd-Wong [4]; Theorem 2(Dm) by
Danes [7], Husain-Sehgal [14], Theorem 3(Em) by Ciri¢ [5] and Massa
[207, and Theorem 3(Dd) by Browder [4]. Note that Theorem 3(Bd) is
given by Meir-Keeler [21] and Theorem 2(Bd) by Park [26].

Theorem 3(E5) of Hegediis [11] is the following.

TuEOREM 3(Ed). If f is a selfmap of a complete metric space X satisfying
the condition (EO), and if every point is regular for f, then
(1) f has a unique fixed point z*E€X,
(2) the Picard iteration of any € X converges to x*, and
(8) for any x€X, we have
d(z*, frz)<ard(z, fx)/(1—a) (n=0,1,2,...),
d(z*, frr)<ad(f* 'z, f*z)/(1—a) (n=1,2,3,...).

Some variants of Theorem 2(Cd) are possible. One of the most popular
type is the following.

COROLLARY 2(C3). Let f be a selfmap of a metric space X. Suppose there
exists a positive integer k such that f* satisfies the hypothesis of Theorem 2
(C3). Then f has a unique fixed point in O(u).

Similarly, we can state a Cgrollary 3(Ed) such that the conclusion includes
approximation formulas as in Ciri¢ [5].

4. For commuting maps

Jungck [17] first gave a fixed point theorem for commuting selfmaps f and
g of a complete metric space X satisfying the conditions gX—fX, f is con-
tinuous, and

(Ed)’ d(gz, gy) <a d(fz, fy), a<l0,1).
Similarly, we can consider other conditions ( )’ just imitating (Ed)’. There
have appeared a number of extensions of Jungck’'s theorem for other cont-
ractive type conditions; for example, Jeoung [16] for (Cd)’, Ranganathan
297 for (Em)’, Kasahara [18] and Park [25] for (Dm)’, Park-Rhoades
[28] for (Dd)’, and Bae-Park [1] for (Bd)’. A unified approach to these
extensions is given in [27].

Now we show that Theorem 2(C)) can be extended to a theorem with
respect to commuting maps.

Let £ and g be selfmasp a metric space X. A point £o€X is said to be
regular if there exists a sequence {z,} ,e, in X such that fz,+,=gz, for each
n<w and diam {fz,| n€w} <. Theset {fz,|nSw} will be denoted by O(z,).
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THEOREM 2(C0)’. Let f and g be commuting selfmaps of a metric space
X. Suppose there exists a regular point ug=X such thas
(1) O(uy) has a regular cluster point po€X, at which f is continuous, and
(2) the following condition holds:
(CO)’  for any >0, there exist eg<e and 60>0 such that for any
z, yE {xn} U {Pn} U {fPO}’
e<diam (0(z) UO(y))<e-+0dy implies d(gzx, gy) <&.
Then fpo=gpo and fu,—po. Lf (C8) holds for all regular points zx,y<EX,
then fpo is the unique common fixed point of f and g.

The proofs of Theorem 2(C§) and the main result of Park-Rhoades [28]
can be easily combined and modified to prove Theorem 2(C3)’.

For f=1%, the identity map of X, Theorem 2(Céd)’ reduces to Theorem
2(Co).

5. Problems

We conclude this paper by raising some open questions.
(1) Are there other counterexamples of the implications between various
conditiuns in Section 27

(2) Are there any extensions of Theorem 2(Cd) to the conditions (Bm),
and (Bd), or are they independent?

(8) C.S. Wong [33],[34] gave characterizations of the contractive type
condition (Bd) of Meir-Keeler [21] and some others. Are there any similar
characterizations of (Bm) and (BJ), or of others?

(4) The conditions (Ad), (Am), and (Ad) imply d(fz, fy)<d(z, )
(nonexpansive) [10], d(fx,fy)<m(z,y), and d(fz, fy)<o(x,»), respec-
tively. There are a number of theorems on nonexpansive maps of certain
spaces. Can those be extended to more general maps satisfying d(fz, fy) <
oz, y)?

(5) Most of the results of this paper are also true in generalized metric
spaces, L-spaces, Hausdorff uniform spaces, and 2-metric spaces, and are
probably extendable to multi-valued functions.
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