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INFINITESIMAL VARIATIONS OF THE INVARIANT
SUBMANIFOLD OF A P-SASAKIAN MANIFOLD

By JAE-RyonG Kim

§0. Introduction

In recent year, Sato ([1]) has introduced P-Sasakian structure (or normal
paracontact Riemannian structure) and a number of authors has studied some
characteristic properties of a P~Sasakian manifold ([1], [2], [3]).

On the other hand, many authors have studied infinitesimal variations of
submanifold of Riemannian and Kaechlerian manifold. Moreover K. Yano,
U-Hang Ki and J.S. Pak ([6]) proved that an infinitesimal fibre-preserving
invariant conformal variation of a compact orientable invariant submanifold
of a Sasakian manifold is necessarily f-preserving, where f~preserving means
that it is invariant and it preserves the induced tensor field £,> of type (1,
1) on the invariant submanifold of a Sasakian manifold. And K. Matsumoto
has proved theorems analogous to those proved in ([6]) in the invariant
hypersurfaces of a P-Sasakian manifold.

The purpose of the present paper is to study infinitesimal variations of a
compact orientable submanifold of a P-Sasakian manifold and to prove the-
orems analogous to those proved in ([4],[6]). Thanks are due to Professor
U-Hang Ki for his invaluable advice.

§1. Prelimsinaries

Let M* be a n—dimensional P-Sasakian manifold covered by a system of
coordinate neighberhoods {U;z* and g;; be the Riemannian metric where
and in the sequel the indices #,7,7, ... run over the range {1,2,...,7}.

Then we have

QD V;fi—V:f;=0,

1.2 V;fi=(—gutfif) fi+ (—gp+fafidfs
f* being a unit vector field of M* and f;=f7g;; ([1],[2],[3]), where V;
denotes the Levi-Civita covariant differentiation. Now if we put

1.3) fii=V;f?
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then we have
(1.4) fifi=1, fifi=0, f.fi=0,
(1.5) fifr=0—fif"
1.6) fi=fy (Fi=guli)

and

A7) gufifi=gji—fif
Then we can easily obtain

(1.8) Kyt fo=gufi—giifn

1.9) Kjfi=—G(—1f;

(1.10) K fi—K;f5=(n—2) f;;—dg;i+ 26 f; fo

(1- 11) szfit:Kizfjt,
where K;;* and Kj; are respectively the curvature tensor and the Ricci tensor
with respect to g;;, ¢ is defined as ¢=f;;g7 ([3]).

Let M™ be a m-dimensional Riemannian manifold isometrically immersed
in M by the isometric immersion ¢ : M#—M» and covered by the local
coordinate system {V;y%. We identify peMn with ;/(p) €M= and the tan-
gent space T,M™ with a subspace of T,M*. In terms of lccal ccordinates
(%) of M™ and (z*) of M the immersion 7 is locally expressed by azt=
zh(y2).

If we put B,=0,z!, 3,=8/9y% then B, are m-linearly independent vectors
of M tangent to M=, Denote by gz, the Riemannian metric tensor of Mm,
we have

8eb™ Bchbigji
because the immersion is isometric.

We denote by C,* (n-m) mutually unit normals to M= Then the metric
tensor of the normal bundle of M= is given by g,,=C,’C,=5,,, 8,, denoting
the Kronecker delta. The systems of indices @, 4, ¢, ...and z, ¥, z, ... run over
the ranges {1,2,...,m} and {m+1,...,n} respectively and the summation
convension will be used with respect to these indices.

Let hz,* be second fundamental tensors of M™. Then we have the follow-
ing Gauss and Weingarten equations

(1- 12) VbBai= hbazcziy V bei= - hba.‘bBtli

V5 being the so-called van der Waerden-Bortolotti covariant differentation
and hy%,=hyYg%%g,,, where VB, ViC,F are

i i e i i ip k
v bBa abBa {b d} Bc + { J k} Bb]Ba )

v beiz abc.z-i + [ ]i k} Bbjcxk —T byzcyi
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and {/zk} and {bac} are the Christoffel’s symbols formed with g;; and g,

respectively and I'y”, are the components of the connection induced on the
normal bundle of M= from the Riemannian connection ' of M, that is,
rpo=(osci+ { [ Bics) €1, i=Chgmg

Denoting Ky and Ky,,* the curvature tensors of M™ and of the normal
bundle of M™, we have the following structure equations of Gauss, Codazzi
and Ricci respectively:

(1.13)  Kyo*=Ky;i*Bs*BI By By + hy® h s — b chas®,

(1 14) O=KkjithkajBaiChx— (Vckbaz—Vbhmx)s
and

(1.15) Ki0*=K3;*B#BICCy*+ ha™hfy— hee™haty-

A m—dimensional submanifold M= of M* is called invariant (or an invari-
ant submanifold) when each tengent space of M= is invariant under the
action of f;7. Hence in this case, we can put

(1.16) fiiBy=f*B,’, f;C,i=fC),

f#* and £,* being tensor fields of type (1,1) of M™ and the normal bundle
of Mm™ respectively. Putting fio=13°Cess fyz=/Sy*8rx» We have
fbazfab’ fyz=fxy-

On the other hand, we put

(L.17)  FimfoB,i+feCyi.
Transvecting the equations of (1.16) with f;7 and making use of (1.5),
(1.16) and (1.17), we have

(1.18) firfs=0—ffe [fif*=0,

(1 19) fzzfzyzaxy—'fxfy-
And now from (1.4) we have

(1.20) fafe+fof*=1,

(1.21) fafb=0, fofr=0.

Differentiating covariantly the equations of (1.16) and making use of (1.2),
(1.12), (1.16), (1. 17) and (1.18); we have

(1- 22) Acfbaz (__5‘a+ftfa) fb+ (—'gcb"l’"fcfb) fa,

(1 23) hcaxfbazhcbyfyx—gcbfxs

(1- 24) 14 cf z =O

Finally differentiating covariantly the equation (1.17) and making use of
(1.3), (1.12) and (1.16), we can obtain

(1.25) Vyfe=fi*+ f*hs*s,

(1.26) Vyfo=— fohs,*
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From the last equation of (1.18) and (1.20), we can see that there exist

only two cases: (1) f*=0 or

(1) In case f*=(, that is,

(1.27)
(1.28)
(1.29)
(1. 30)
(1.31)

(1.32)
(1.33)
(1. 34)
(1. 35)

tangent
(1. 18)~(1.
fet faf =0 —fo S°
fzzfzyzazy
fafo=1
fafab::O
Ve fir=—0"fy+2f fof®
—guf°
kcaxfbazhcbyfyz
cha: =0
Vyfo=Ff"
f?hs,*=0.

(1. 27), (1.29), (1.30), (1.31) and
(1. 34) show that (f4%, g, f5) adm-
its a P-Sasakian structure in M=,

Thus we have

(1.36)
1.37)

Kis® fo=—Sfagos+ S
Ky fl=—(m—1) f.

(1 38) Kcefbe'—Kceabfea

(1. 39)

= (m—z)fcb—"(ﬁgcb_{" 2¢fcfb
Kceszszefce’
where ¢=f,,g°.

(2 fr=0.

{ (2) In case f,=0, that is,

the P-Sasakian structure vector f¢ of the ambient manifold M* is

| normal to the submanifold M=,

26) reduce

1.27)’
(1. 28)’
(1. 29)’
(1.30)’
(1.31)’

(1.32)
(1.33)
(1. 34)’
(1. 35)’
(1.27)’

fbafae=5be
fxzfzy=5.zy—_fzf'y
fzfy'r:

chba=

hcaszazhcbyfyx—gcbfx
Vefa2=0

Jot=— fhy®,
be"":O.
and (1.31)’ show that

(f+* g.5) admits an almost product
structure 1n Mm,

§2. Infinitesimal variations of invariant submanifolds

We consider an infinitesimal variation of invariant submanifold M= of M=

given by

2.1

zh=zh(y) +E*(y)e,

where &%(y) is a vector field of M* defined along M™ and ¢ is an infinitesimal.
We then have

(2.2) Bgt=Bt+ (9,50)e,

where Bjt=0,%* are m-linearly independent vectors tangent to the varied
submanifold. We displace Bj* parallelly from the varied point (#%) to the
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original point (z*!). Then we obtain the vectors
Ebh’—: Ebh+ [’j,’h (x“{—EE) EijiE
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at the point (z*), or Byt=Bt+ (V;6%)e, neglecting the terms of order higher

than one with respect to &, where
(2. 3) V;,E"=8;,E"+Fj,~h31,"§f.

In the equel we always neglect terms of order higher than one with respect

to &. Thus putting 5Bs*=B;*—Bs*, we have dByi= (V;£*)e.

If we put

(2.4) &ER=EaB}4-EC A,
then we obtain

(2.5) ViEh= (V52 —hy,25%) B+ (V i&2+ hy*62) C 1
because of (1.12).

Now we denote by C,* (n-m) mutually orthogonal unit normals
varied submanifold and by C,* the vectors obtained from C,}* by
displacement of C,* from the point (#*) to («*). Then we have

(2.6) CHr=Cp+TI;(z+86)EIC %
We put
(2.7) o6CH=Cpr—C}
and assume that 6C,* is of the form
(2.8) OCH =nte= (9,°Bi+7,°C,})e.
Then, from (2.6), (2.7) and (2.8), we have
(2.9) Cp=Cp—T;#5iC)le+ (3,°Bt41,°CP)e.

to the
parallel

Applying the operator d to By/C,ig;;=0 and using (2.5), (2.8) and dg;;i=0,

we find
Tyt hyay®) +13=0,
where §,=£&%¢,, and 7,,=7,gcs oOr
(2.10) 7= — (VE,+ 287,

V4 being defined to be V2=gF.. Applying also the operator d to C,/C.g;;

=g,. and using (2.8) and dg;;=0, we find
(2' 11) 77y$+ 7]xy=0’

where 7,,=7,°2zz-

We assume that the infinitesimal variation (2.1) carries an invariant sub-

manifold into an invariant submanifold, that is,
(2.12) f#(x+8) B, are linear combination of Bk

Now using the equations of (1.2), (1.16), (1.17), (1.18), (2.2), (2. 3),

(2.4) and (2.5), we have
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(2 13) fih (x+ SE) Ebi_:[fba —'fbe (Vega—heazéz)s_f_fea (bee__hbezsx) 8+2(Eefe)
Fofoe—fi§%— Fo&pe| B[ f,7 (Vi€ + he?€®) — 13
(V aéz_{_kﬂgzée) ——f bsx—gbf Ijaxhe'

Thus (2.12) is equivalent to

(2.14) [T —fr (V%) —f1§*=0
by the virtue of (1.25).

An infinitesimal variation given by (2.1) is called an invariant (or inva-
riance—preserving) variation if it carries an invariant submanifold into an
invariant submanifold. When &#=0, that is, when the variation vector &*
is tangent to the submanifold, the variation is said to be tangential and when
&2=(), that is, when the variation vector & is normal to the submanifold,
the variation is said to be normal. When the tangent space at a point (z%)
of the submanifold and that at the corresponding point (z*) of the varied
submanifold are always parallel, the variation is said to be parallel. Then
we have the following assertions:

LEMMA 2.1. In order for an infinitesimal variation to be imvariant, it is

necessary and sufficient that the variation vector satisfies (2.14).

LEMMA 2.2. In order for an infinitesimal variation to be parallel, it is
necessary and sufficient that

ngx_{_ hba’$a= 0.

LEMMA 2.3. If an infinitesimal invariant variation of M™ is parallel, then
it is tangential in case (1), that is, it is tangential in the case that the vector
fields fi are always tangent to the submanifold, and it is normal in case (2),
that is, it is normal in the case that the vector fields i are always normal to

the submanifold.

83. The variations of £
Suppose that an infinitesimal variation (2.1) is invariant. Then puttmg
(3.-1)  fH(z+8e) Bi=(F2+0f+%) BA,
we have from (1.15) and (2.15)
(8.2) ofyr=Lf V5~ fi'V £2+2(f.) frfa— f165— fog, e
If an invariant variation preserves f;%, then we say that it is f—preserving.
LEMMA 3.1. An invariant variation is f-preserving if and only if
(3.3) (Vo) foo— frr (T £2) +2(E2 F,) fr fo— frEe—&, fo=0.
Now applying the operator & to g.,=g;;B,/By, and using 0g;;=0, we find
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(3~ 4) 5gcb: (Ve5b+ Vbse_'zhcbzgz) &

from which we have
6gcb: —_ (Vbsc._l_ chb*‘Zh‘bzf‘t)E.

A variation of a submanifold for which dg.;=0 is said to be isometric and
for which Jg.; is proportional to g, is said to be conformal. A necessary
and sufficient condition for an infinitesimal variation (2.1) of a submanifold
to be conformal is

(3.5) VstV —2ho5"=2Ag 0,
where A= (1/m) (7 &¢— h,*,£%).

Since the infinitesimal variation (2.1) is invariant, we have

(3- 6) f- ihéyi =f yxézh-

Then using (2.9), we find

(3.7 fMx+8e)[C)i =T} EiC, e+ (9,2B,i+3,7C.H)e]= (f,*+ 0 f,¥) C.»
from which we can get

3.8 ﬂyefe"*‘fafy—fyf" =fyx7].za’

(B.9) OfyF=L— "+ f— f&,— £,55+2(82 ) £, f<de.

On the other hand, applying the operator & to (1.29) and (1.30), we
have the variations of f¢ in case (1) by the help of (3.2) and (3. 4)

(3.10) dfc=8fcs
¢ being the operator of the Lie derivation.

We now define a tensor field 7., by

(B.11) Tu=Viis— V£ fefil— (o6 f+(F€) fo—fe eV £a) fofo

(B.11) Ta=Vibs— V) ffp®
for the case (1) and (2) respectively, and prove

LEMMA 3.2. In order for an infinitesimal invariant variation of an invar-
iant submanifold to be f—preserving, it is necessary and sufficient that T .;=0.

Proof. Suppose that an infinitesimal invariant variation of an invariant
submanifold is f~preserving. Then in case (1) by Lemma 3.1, we have
Vi —F. (Vi) fe— (V£ F e —frbef s =0,
by transvecting (3.3) with £,¢ and using (1.27) and (1. 30),
Jfa Vdéa:f‘:fa ( VeEa)fd —fa%.
by transvecting (3.3) with £, f,® and using (1.29) and (1.30) respectively.
These two equations imply that T.,=0.
Conversely we suppose that 7T,;=0. Then we have by transvecting (3. 11)
with f¢
FeVie=fe fe(V £ fo— 6., fV os=fefo(V.£o) fot fé..
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Transvecting (3.11) with f,° and taking account of (1.27), (1.30) and the
last equations, we have our lemma. In case (2), from Lemma 3.1 and
(1. 27)" we can easily verify our lemma.

And consequently we shall prove

LEMMA 3.3 For an infinitesimal conformal invariant variation of an inva-
riant minimal submanifold, we have;

In case (1) In case (2)
(3.12) T+ T5.=0 (8.12) T+ T5.=0
(3' 13) T+ fcefbaTeaz (ch) fe (3 13)’ T+ fcefbaTeazo
— (&) fe

(3.14) T, Tev=2T¢F &+4(Lf,) (3.14) T pTt=2T¢F &,
Feee—2(81) (B9
—2AR 1) fe

Proof. Differentiating (3. 5) covariantly and using Ricci identity and the
first Biahchi identity, we find

(3 15) VchSa_"Kbacdédzyc(hbaxéx+Agba)+Vb(kcazgx+Agca)

—V, (hcbI$z+ Agcb)-

Transvecting this with g and using the condition #.,=0, that is, the
submanifold is minimal, we find

(8.16) VW £,+K6c—~2V(h,"E,) + (m—2)V ,A=0.

On the other hand, in case (1) we can easily verify that

B.17)  fP (V&) =A,
by the virtue of (3.5).
Thus from the definition (3.13), (1.28) and (1.32), we see that (3.12).

Now using (1.27) and (3.17), we have

S Lo Tee=f fot V &) —Vsa—E fen fat & fea fs+ Fa@ Fo— Fi8 Fat Afs fu
where we used the identity £fy==_&f, ;1 f.V ce.
Consequently from (3.11) and the last equations, we have (3.13).

Next, from (3.11) we can get

T Th=TW £— AT f fy+ T f 8, [1— T f156, fo— T fe f2(V £,).

Therefore using (3.13) and feT,.=—Lf,+Af., we have (3.14)

Finall, in case (2), we can obtain our lemma from (3. 11)” by the virtues
of (3.5), (1.27)", (1.28)” and (I1.32)".

Applying the operator V¢ to (3.11), using (1.38), (3.16) and Ricci
identity, and assumming that the submanifold is minimal, we then have

(3.18) VeTyp=—mlVyA+Ad fi+ f12V A+ fe (7 A) fy— (m—3) %8 fa.
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Now an infinitesimal variation which satisfies £f*=@f%, @ being a certain
function, is to be said to be fibre—preserving. Thus for a fibre-preserving
variation from 0g,;=2Ag.c and (1.29) we see that & f*=—A f+ by (3. 12).
Putting u=¢&,f¢, differentiating this covariantly and using the identity £f,=
& fu+ f.Vi&e we then have

Vip=8fs=Afs
Thus we obtain V'V u= (V A) fi+ Afs., from which we have
eV A fa=V 1A, F¢ (7 1A) =0,
where we used Ricci identity and fu;="Fps
Substituting this result into (3.18) we have
VeT p=— (m—1)V3A+ A f3,
from which we have

V(T mAga—Af.[5)E9) =5 T T+ (m2—1) A2
Thus if the submanifold is compact orientable, we have
[(reTa+2@m—1 anav=o,
dV being the volume element of Mm. Hence we have ((4], [(6))

THEOREM 3.5. If an infinitesimal conformal invariant variation of a com-
pact orientable invariant minimal submanifold of a P-Sasakian manifold whose
structure vector [ is tangent to the submanifold is fibre—preserving, then it is
isometric and f-preserving.

Similarly we have

THEOREM 3.6. For an infinitesimal confermal imvariant variation of a
compact orientable invariant minimal submanifold of a P-Sasakian manifold
whose structure vector f' is normal to the submanifold, if the ambient manifold
is space of a constant curvature, then the variation is isometric and f-preser-
ving. Moreover it is normal.

Proof. If the submanifold is minimal, from (1.32)" and (1.34)’ we can
easily find A,%f*?= —mf* and ¢=0.
On the other hand, we assume that the ambient manifold is space of
constant curvature, then we see that from (1.13) and (1. 14),
chba5”= - (Sdgcb'—s«cgdb) +hdaxgahcbx—hcazsahdbza
Vahey™=V chay®.
Now applying the operator F¢ to (3.13)’, using (3.17) and the last equat-
ions, and computing by straighforward, we have

VeTecz VeVe$c+ (m+ 1) fc - heczhaezga - 2Vt:A - 2Vehcuéz-
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Consequently by substituting (3. 16) into this equation, we have
VeT, =2mé,—mV A.
Hence we can obtian
Ve[ (Tec+ mAgec) g =2mé &+ % TT 5+ (mA)?,

from which, if the submanifold is compact orientable, we have

[tomeset FTATu+ (ma) V=0,

This completes the proof of our theorem.
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