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LOCAL CONSTANCY PRINCIPLE AND ITS APPLICATION
TO THE PARTIAL DIFFERENTIAL EQUATIONS

By JONGSIK KIM AND DOHAN KIM*

Introduction

In 1957, H. Lewy in his famous article on the partial differential equa­
tions without solution raised a question whether every homogeneous partial
differential equation has a nonconstant solution. This question was negati­
vely answered by L. Nirenberg in 1973 (cf. [3J). He showed that perturbed
Mizohata operator

:t +it(l+p) :x
has no nonconstant solution for certain functions p.

This perculiar phenomena was for long time unexplained until finally in
1979, F. Treves introduced local constancy principle and explained the reason
why Nirenberg's example has no nonconstant solutions (cf. [7J).

F. Treves, however, dealt with only Nirenberg's example in a generalized
form; namely,

:t +it {I+p+th ex, t)} ;x'

It will be shown here that if L= gt +ib(x, t) :x and if b(x, t) satisfies

certain condition, called (M,,), with an odd integer k (cf. § 1), then any
nonconstant solution of Lu=O satisfies the local constancy principle, L can
be transformed by the diffeomQrphism into

L= ~ +it" {I+th (x, t)} :x'

and, moreover, for this operator L the parallel results obtained by Treves
can be generalized; that is,
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Lu= ~: +itk{l+th(x, t)} ~: -f

is not locally solvable for generic f,

L1u= ~: +itk {l+p+th(x,t)} ~: =0

has no nonconstant solution for certain functions p, and with the same p,

Lu= ~: +itk{l+th(x,t)} ~: =pu

has no nontrivial solution.
The class of operator satisfying (Mk ) with odd integers k;;;:;;O includes the

generalized Mizohata operator

~+itk~ot Ox

and L= :t +ib(x,t) ;x with b(x,t), odd function with respect to t vari­

able.

§ 1. Reduction to the canonical form

Throughout this paper D will stand for an open subset of R2. We shall
denote a point in R2 by (x, t) . Let L be a Coo complex vector field in Q
defined by

L=~+ib(x t)~ot ' Ox

where b(x, t) is a real valued COO function in Q. For an integer k;;;:;;O, we
define Zk, a subset of D such as

okb
Zk= {(x, t) ED I atk (x, t) =O}.

For each integer k;;;:;;O, we introduce a condition (Mk ) on b(x, t) such that
(Mk) (l) Zj U=O, 1,2, ..., k-l) are all equal and coincide with an one di­

mensonal COO submanifold Z of D,

okb
(2) atk (x, t) ~o for any (x, t) E Z.

THEOREM 1.1. Let b(x, t) be a real valued COO function in D. Suppose that
the property (Mk) holds in Q for some integer k;;;:;;O. If woEZ, then there
exists an open neighborhood U of Wo such that
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b(x, t) = (t-ifJ(x) )"g(x, t)

where ifJ(x) is a real valued C'" function in D and g(x, t) is nowhere vanishing
real valued Coo function in U.

Proof. By the suitable translation of coordinates, we may assume that Wo
is the origin of R2.

Since ~:~ (0,0) =0 for all j=O, 1, 2, ..., k-1 and ~:t (0, 0) ~ 0, by the

Malgrange preparation theorem, there exists U, an open neighborhood of
wo, such that in U

b(x, t) = (tk+al (x)t"-l+ "'+a,,(x) )g(x, t)

where ai(x) (i=l, 2, ... , k) is a real valued Coo function in U and g(x, t)
is nowhere vanishing real valued C'" function in U. By the condition (M,,),
for each fixed x,

tk+al (x)t"-l+"'+ak(x)

has k-multiple root t=ifJ(x). Therefore,

t"+al(x)tk-1+"'+ak(x) = (t-ifJ(x»k.

Since -kifJ(x)=al(x) and al(x) is a real valued COO function, ifJ(x) is also
a real valued CC" function in U. Thus

b(x, t) = (t-ifJ (x»"g(x, t)

where ifJ(x) and g(x, t) are real valued Coo functions and g(x, t) is nowhere
vanishing in U. Q. E. D.

THEOREM 1. 2. Suppose (Mk) holds for b(x, t) in Q. Let woE:Z. Then
there exists an open neighborhood U of Wo and a local coordinates (y, s) in
U, vanishing at wo, such that, in the local chart (U: y, s)

L=~+ib(x t)~at 'ox

takes the form

L=g(y, s) {;s +isk[1 +sh(y, s)J ;y}

where g(y, s) is a nowhere vanishing complex valued Coo function in U and
hey, s) is a real valued C"" function in U.

Proof. Let Wo= (xo, to). By the theorem 1, there exists an open neigh­
borhood U of Wo such that
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hex, t) = (t-ifJ(x»kh(x, t).

Let u=t-rjJ(x) and Z=X-Xo. Then

0_o 0_ , 0 0
1it- ou' ox - -ifJ (z) ou + oz .

Therefore, setting Ji(z, u) =h(x, t), we have

L= :u +iukJi(z, u) (-ifJ' (z) :u + ;z)

=(l-iukJi(z,u)rjJ'(z» ;u +iukJi(z,u) ;z·

We shrink U, if necessary, such that in U

l-iukJi(z, u)ifJ' (z) ~O,

l+iukJi(z,u)ifJ'(z) ~O.

Since Wo= (0, 0) in (z, u) coordinates, this shrinking is possible. Thus tn

U,

L - (1-" kh-( )J..'(» (() + iukJi(z, u) () )
- tU Z, U 'fJ z (}u 1-iukJi(z, u)rjJ' (z) oz

=(l-iukJi(z,u)ifJ'(z» {~s + iukJi(z,u)[l+iukJi(z,u)r/J'(z)] o}
u 1+u2kJi2(z, u)[ifJ'(Z)]2 OZ

_(_"k-( )J..'(»{o u2kJi2(Z,u)[rjJ'(z) ()
- 1 tU h z, U 'fJ Z OU 1+ u2kJi2 (z, u) [rjJ' (z) J2 0%

+i ukJi(z, u) ~}
1+u2kJi2 (z, u) [ifJ' (z) J2 oz

We perform a second change of variables z=z(e;:,r), u=r in U such that

o _ 0 u2kJi2(Z,U)rjJ'(z) 0
or - ou 1+u2kJi2(z, u)[rjJ'(Z)J2 oz'

o _ 0
oe;: - oz'

whence

where

fez, u) =l-iukJi(z, u)if/ (z).
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1(~,X") f(z(~,X"),X"), and

f3(~ )- ii(z,u)
,X" - 1+u2kii2 (z,u)[p'(z)]2

Since f3(~, X") is a real valued COO function in U and f3(wo) ~O, Shrinking
U, if necessary, we have

f3(~, X") = [3 (~, 0) [l+ZOlT (~, X")].

Our last change of variables will be of the form ~=~('), ZO=lT, so that

o 000
0' =f3(~, 0) oC jji=](i'

Finally we revert to the notation y, s in place of <:, (J respectively and get

L=g(y,s) {;s +isk[l+sh(y,s)] ;y}

where g(y,s)=l(~,zo), h(y,s)=r(~,X").

In each coordinates change used in the above we may take the coordina­
tes to vanish at Wo by the suitable translation. Thus the coordinates (y, s)
vanish at wo. Q. E. D.

REMARK. In the new coordinates (y, s), we have

l:n U= {(y,s) EU/s=O}.

This is clear from the way of constructing new coordinates in the proof of
the theorem 1. 2.

Thus by the theorem 1.2, when (Mk) holds for b(x, t), L reduces locally
in the neighborhood U of woEl: into a canonical form

L=g(x,t) {;t +itk[l+th(x,t)] :Xl·
We note that in this new coordinates

wo=(O,O), l:nu={(x,t)!t=O}.

§ 2. Local constancy of the solution

THEOREM 2.1. Suppose that (Mk) holds for b(x, t) for some odd integer
k=2m+1. If Lu=ou/ot+ib(x,t)ou/ox=O has a solution u(x,t)=A(x,t)+
iBex, t), where A, B are real valued C' function, in the open neighborhood V
of woEl: such that if du(w) ~O for any wE V; then for each fixed x, near
to xo, the function B(x, .) or A(x, .) attains local minimum or local maxi­
mum at t(x) where (x, t(x» El: nV.
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Proof. Let H u= ou 4-- ~u ~ be the Hamiltonian field on V aSSOCl-
ot uX uX ut

ated with u. Then

H u = ou ou _ ou ou =0
u ot ox ox ot .

Since du= (~:' ~~) ~O on V and since Lu= ~: +ib(x, t) ~~ =0, it fo­

llows that L=g(x, t)Hu, that is,

o . ( ) 0 () (ou a ou 0)
---at+ tb x, t ox =g x, t at ox - ox ox

where g(x, t) vanishes nowhere on V. From whence, we get

g(x, t) ~: =ib(x, t), g(x, t) ~~ =-1,

or,

g(x, t) (At+iBt) =ib(x, t), g(x, t) (Ax+iBx) =-1-

Since A (x, t), B(x, t) and b(x, t) are all real valued, from the first equation

we have Bt=b(x,t)Re(;). Since ~:~ =0 for j=O, 1,2, ...,k-1 on 2, we

have ~~ =0 for j=1,2, ,k on 2n V. Similarly, At=b(x,t) Im(;).

Hence 0;4 =0 for j=l, 2, , k on 2 n v:
utJ

ok+lA ok+1B okb
Suppose that both otk+1 (w) =0 and otk+1 (w) =0. Then otk (w) =

ok+1A ok+lB
O. Thus either otk+l (w) ~O or otk+l (w) ~o at each point win 2 n V.

Since k=2m+ 1 is an odd integer, this means that for each x, near to xo,
the function B (x, .) or A (x, .) attians local minimum or local maximum at
t(x) where t(x) is such that(x, t(x))E2n V. Q.E.D

REMARK. By shrinking V, the open neighborhood of wo, if necessary,
ok+lA ok+lB

we get either otk+l (w) *0 for any wE2 n V or otk+1 (w) *0 for any

ok+1A ak+lB
wE2 n V, since otk 1 or otk+l is a continuous function. Moreover,

since 2= {(x,t)EQ!b(x,t)=O}, and snce b(x,t)=(t-p(x))h(x,t) where
hex, t) nowhere vanishes, b(x, t) has the same sign in the one side of 2 in
U. Thus shrinking V, if necessary, either A(x, .) or B(x, .) attains global
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minimum along 2 nV in V or global maximum along 2 nV in V. There­
fore, taking iu(x, t), which is also a solution of Lu=O if u(x, t) is, or
changing sign of u (x, t) or iu (x, t), we may assume that B (x, .) attains
minimum along 2 nV.

Thus, in the sequel, we shall assume that B(x, .) attains minimum along
2n V in V.

DEFINITION Let D be a subset of R2 and C be the field of complex num­
bers. Let u be a mapping from D into C. The fiber of u at zEu(D) is the
set of points (x, t) in D such that u(x, t) =z.

THEOREM 2.2. Let b(x, t) satisfy (Mk) for an odd integer k~O. Suppose
that u(x, t) =A(x, t) +iB(x, t) is the solution of

ou +ib(x t) ou =0
at 'ox

such that du*O in the open neighborllOod V of woE1:. We assume that B
(x, .) attains minimum along 1: nV.

Then one can choose a new local coordinates (y, s) in a simply connected
open neighborhood Vc V of 'It'o, vanishing at wo, such that the following
local constancy principle holds;
(L. C.) the fibers of u in V consists either of a single points, when they are

contained in Vn2, or else of a pair of points, (y,s) and (y, -s),
when they do not intersect 1:.

Proof. In this proof, we take the advantage of the reduced form of L as
is done in the theorem 1. 2. Thus we assume that b(x, t) = tk(1+ th (x, t) )
and u is the solution of

~~ + itk[l + th (x, t) ] ~~ =0.

We shall first show that A.., does not vanish in V. In fact, Lu=O implies

that (At+iBt) +ib(x, t) (A..,+iB..,) =0 or, Bt=b(x, t)A..,. Note that ~jI!
uP

(x, t) =0 for j=l, 2, ... , k and ~jk (x,t) =0 for j=0,1,2, ..., k-1 only in 2 nV
uP

ak+lB akb
and atk+1 ~o and otk *0 in 2 n V. But A..,(w) =0 for wE V/1: implies

Bt(w)=O for wEV/2, while A..,(w)=O in 2n V implies ~t:~~ Cw)=O

for wE2 n V Both cases cannot occur. Thus A..,Cw) *0 for any wE V.
In regard of the reduced form of L, that A.xCw) *0 for each wE2 nV
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implies that the set K~={(x,t)IA(x,t)=~} for a real number ~ is one di­
mensional manifold which is transversal to Z, whenever K~ meets with Z,
in the neighborhood of Z nv. We may take V sufficiently small and thus
may assume K~ is one dimensional submanifold of V whkh is transversal
to Z whenever K~ meets with Z.

Now let us notice that, by shrinking V, if necessary, we may assume
that b(x,t)<O for (x,t) in V+= {(x,t) EV!t>O} and b(x,t»O for (x,t)
in V-= {(x, t) E Vlt<O}

Let x=x(t) be the solution of A (x, t) =.; for some real number .;. Then

x=x(t) is the solution of

dx A
AXdt+At=O or .x'(t)=- At,

:x:

since A x does not vanish on V. Let Y(x, t) = - ~t. Then if b (x, r) <0
x

for any ex, r) E v, b(x, t) ~O for any (x, t) E V with t6r. Also since A t=
oon zn V (c}: Proof of theorem 2.1), Y(x, t) =0 at any point (x, t) EZn
V where b(x, t) =bt(x, t) =0. Therefore by the H. Brezis lemma (cf· [1]),
if b(x(to) , to) <0, then b(x(t), t) ~O for t~to. Applying the same arguments
for -h(x, t), we conclude that B(x(t), t) attains global minimum in V at
t=O.

Thus A (x, t) =y+u(wo), Bey, t) =s+B(y, 0) gives a local coordinates (y, s)
in some open neighborhood U of Wo such that local constancy principle
holds. It is clear that we may take U to be simply connected. Q. E. D.

REMARK. Let us remark that the open neighborhood U has to be taken to
be tt-symmetry in the sense that (y, s) E U if and only if (y, -s) E U.

REMARK. Consider u (x, t) = A (x, t) + iB (x, t) as a map from V to C. We
notice that the ]acobian determinant of A=Re(u) and Im(u) with respect

to x, t is as same as {A, B} =~ tu, u} where {P, Q} indicates the Poisson

bracket; i. e. ,

{P Q} = oP oQ _ oP oQ
, oX ot ot ox·

Now since u and u are nonconstant solutions of Lu=O and Lu=O, as
in the proof of the theorem 2. 1

L=g(x, t)H.., L=g(x, t)H...

It is obvious that L=~+ib(x,t)-L and L=-L-ib(x, t)~ are C-line-
ot ox ot ox
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arly independent in V""-2' and G-linearly dependent in 2' nV. Thus the pair
gHu and gHu are G-linearly independent in V""-2' and G-linearly dependent
in Vn2'.

S· H ( ou a ou a) - ( ou a ou a) d ( )mce g u=g ---at ox - ox ----at' gHu=g ---at ox - ox at an g x, t

does not vanish in V, it follows that 2~ tu, u} = {A, B} vanishes on 2' nV

but never vanishes on V""-.E.
Therefore, for any real/;, " the set K/;= {(x, t) IA(x, t) =.;} is transversal

to the set Kc= {(x, t) ,B(x, t) =Q whenever they meet in V""-.E.

§ 3. Preliminary theorems.

The following three theorems are due to F. Trever (cf. [7J) . We offer
his proofs to make this article self contained and to use his results in later
sections.

THEOREM 3. 1. Let {U,.El satisfy local constancy principle with respect to
a complex valued function u(x, t). Let V be an open subset of U, u-symme­
tric and connected. Let hEG' (V) be such that d(hdu) =0. Then h is constant
on each fiber of u in V.

Proof. Let U+= {(x, t) E Ujt>O} and U-= {x, t) E Ujt<O}. Set V±= vn
u±, Vo= Vn.E, Q=.u(V+) =u(V-), F=p.(Vo). Call h+ the restriction of h
to V+, h- its restriction to V-. Since u is a diffeomorphism of V+ or V­
onto Q, we may form Ji±=Ji±. u-l, and Ji=Ji+-Ji-, which are functions in
Q. Since d(hdu) =0 in V we have d(Ji(z)dz) =0 in Q : Ji is holomorphic
in Q. But Ji(z)----'O as z----.F, and r is a smooth curve, containing nonempty
open arcs, and part of the foundary of Q. This implies that Ji==O in Q.
Q.E.D.

THEOREM 3. 2. Let U, V be as above. Suppose furthermore that V is simply
connected. Let gEGOO(V) be such that d(gdu)==O in the complement of a
compact subset K of U+. Then

Iv d(gdu) =0.

Proof. We may assume that W+= V+""-K is connected. Let W- be the
subset of V- such that W+ nW- is u-symmetric, and set W = W+ U W- U
Vo : W is open, connected, u-symmetric and d(gdu) =0 in W, therefore g
is constant on the fibers of u in W. Let r+ be a smooth curve in W+,
winding around K once and denote by r- its reflection across 2. Thus r
and r- is u-symmetric. With the appropriate orientation we have
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J gdu=J gdu.
r+ r-

But r- is contractible to a point in V-, where d(gdu)=O, therefore s'_gdU

=0. Since the support of gdu is contained in the interior of r+, Stoke's

theorem implies Svd(gdu) =0. Q. E. D.

THEOREM 3. 3. Let L be a C'"complex vector field in an open subset U in
R2 such that L does not vanish at any point in Q. Let tL be the transpose of
Land c=L+tL. Then there is an open neighborhood Uo of a point Wo in Q

and a Co> function u in Uo such that wE Uo, du(w) ~O and Lu(w) =0 tf and
only if there is an open neighborhood Vo of Wo in Q and a function v E C'"
(Vo) satisfying Lv=c in Vo•

Proof. The condition is necessary, for if Lu=O has nonconstant solution,
then L=gHu in Uo, with gEC"'(Uo), nowhere zero, and Hu, the Ham­
iltonian field of u. But then tL= - L= - (HuE), hencec= - HuE. Take Vo
small enough so that log g is defined in Vo and belongs to COO ( U0) • Then

L[ -log g]=_lLg=-HuE=C.
g

Conversely, let v be as in the statement and set M=eVL. We have Mv
=L(ev ) =ceV, and

tM=+LeV= - LeV+ceV= - M.

o 0 oA oB .
If M=A(x, t) ox -B(x, t) at' we have ox =-ae everywhere III Vo• We

may suppose that Vo is simply connected and therefore there is uEC"'(Vo)

such that du=Bdx+Adt, hence M=Hu and therefore Lu=O, du~O at ev­
ery point of VO• Q. E. D.

§ 4: Local unsolvability

Let L be a complex vector field satisfying (Mk ) where k is a nonnegative
odd integer. Thus we may assume that

L=g(x, t) {%t +itk (l+th(x, t)) %x}
on an open neighborhood U of a point WoES. Note that Wo= (0, 0) in
(x, t) coordinates. We call U+ (resp. U-) the subset of U where t>O
(resp. t<O).

We denote by tK"} ))=1,2, ... an infinite sequence of compact subsets of
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U-, having the following properties: The sets KJ) converge to the set to} ,
and, moreover, the projections on the x-axis of the KJ) are pairwise disjoint.

Below, f will denote any C" function in U having the following three
properties;

( i) f?;,. 0 everywhere,
( ii) f 0 in the complement of UKJ)' and

~

(iii) for any v, there exists wJ)EKJ) such that f(wJ)) >0.

THEOREM 4.1. Suppose that there exists an open neighborhood Wc U of
woE2 and a functionvEC"'(W) such that in W

Lv= -itk+lghoX•

Then there does not exist a Coo function W in W such that Lw=f in W.

Proof. Let us write LO=g-lL. Then

Lo+tLo= -itk+1hoX•

By hypothesis, there exists a function vEC"'(W) such that Lov=-itk+1hoX•

We may apply the theorem 3.3. We conclude that for Lo and hence for
L, there exists Uo, an open neighborhood of Wo and a Coo function u in Uo
such that wE Uo, du(w)::I;:O and Lu(w) =0. Thus we may write in Un, L=

gH" where H"= ~u ~- ~u : and gEC"'(Uo), nowhere zero.
ut x x t

Suppose Lw=f in W. Then Huw=L in uon W. Note that (H"w)dx
g

dt=d(wdu). We select an open neighborhood 0 of wo, Dcuon Wand 0
u-symmetric. We write D±=DnU±. Clearly, for),) large enough we can
find an open rectangle

VJ)+= {(x, t) EDla»<x<b» O<t<T,j

contained in 0+, containing K» and not intersecting any K» for v' *v. Let
V»- be the unique open subsets of 0- such that VJ)+ U V»- is u-symmetric,
and call I» the interval in 2, a»<x<b», t=O. Then

V» = V» + U I» U V»-

has the following properties: V» is connected and simply connected; KJ)c
V»; V» is u-symmetric. Let w» denote the restriction of w to V»' By our
hypothesis about f, the support of d(wJ)du) is contained in K». Therefore,

fSK» ; dx dt=O.

But as v~ +00 the argument of g in KJ) becomes arbitrarily close to
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Argg(O, 0), since f~O everywhere in K v and f>O at some point of K v,

the above is not possible as soon as ].J is large enough. Thus w satisfying
Lw-fin W can not exist. Q. E. D.

§ 5. Nonexistence of nonconstant solutions

Let {Km,n,pl (m, n, p are positive integers) be a triple sequence whose el­
ements are contained in U+and whose x-projections are pairwise disjoint.
We make the following hypothesis:

For fixed m, n and for p ~+ 00, the sets Km,mp converges to the set
consisting of a single point (Xm,n, tm,n), with tm,n>O; for fixed m, the point
(xm,mtm,n) converges to (xm,tm), with tm>O; limm_~(x"" tm)=(O,O).

We define then p in the same manner f in § 4 but relative to the Km,mp:
( i) p~O everywhere:
(ii) .0=0 in the complement of U Km,mp;

m,n,p

(iii) Vm'n,p, 3wm,mp EKm,n,p such that p(wm,mp»O.

THEOREM 5. 1. Suppose that

~: +itk(l+th(x, t») ~= =0

has a solution u(x, t) in an open neighborhood Uo of apoint woE}; such that
wE Uo, du(w) *0. Then there is an open neighborhood Wc Uo of Wo such
that any solution UI EC" (W) of

OUI +itk(l+p+ th) OUI =0at ox
is constant in W.

Proof. We use the same notation as in the proof of the theorem 4. 1 ex­
cept that l.i is replaced everywhere by (m, n, p). We duplicate the reasoning

in that proof, taking now f- -itkgp ~;. We reach the conclusion that for

mo, no, Po large enough and m>mo, n>no, P>Po, ,

SI g-lt"gp OUI dx dt=O.
m,n,p ox

But here we cannot avail ourselves of the fact 0;; *0.
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By letting p go to + co, we derive that

and therefore,

Now we let n go to + co. We conclude that dUI vanishes of infinite or­
der at (xm, tm). Since L I is elliptic in the region t>O, we conclude that
dUI==O for t>O. To derive that dUI==O throughout its domain, we use the

"fact that, by our construction of the Km,mp, there is a connected u-symm-

etric open subset W, V, in which L I=.lL and thus LUI =0, with V inter-
g

secting both U+ and U-. Since UI is constant on the fibers of u and is co­
nstant in vn U+, we must have dUI==O in V and by the ellipticity of L
for t<O, also in wn U-. Q. E. D.

THEOREM 5.2. If ~; +itk(l+th (x, t» ~= =0 has a solution U in an open

neighborhood Uo of a point woEl' such that wE Uo, du(w) :;to, then the eq­
uation

~~ +itk(l+th(x, t» ~= +pu=O

has no nontrivial solution in some open neighborhood Wc Uo of wo.

Proof. Duplicate the proof of the theorem 5.1 with f=PUI. Q. E. D.

REMARK.. When hex, t) is analytic, then by the Cauchy-Kovalewska the­
orem

has always nonconstant solution required as in the theorems 5. 1 and 5. 2.

NOTICE. The second author initiated the materials in this article. More
extensive and generalized version of this article will be appear in his paper
now under preparation. The proofs in sections 4 and 5 are essentially dup­
lication of Treves' proof when k=l.
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