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LOCAL CONSTANCY PRINCIPLE AND ITS APPLICATION
TO THE PARTIAL DIFFERENTIAL EQUATIONS

By JonGsik KiM AND DoHAN Kim*

Introduction

In 1957, H.Lewy in his famous article on the partial differential equa-
tions without solution raised a question whether every homogeneous partial
differential equation has a nonconstant solution. This question was negati-
vely answered by L. Nirenberg in 1973 (c¢f.[3]). He showed that perturbed
Mizohata operator

—g—t——i—it (1+,o)%
has no nonconstant solution for certain functions p.

This perculiar phenomena was for long time unexplained until finally in
1979, F. Treves introduced local constancy principle and explained the reason
why Nirenberg’s example has no nonconstant solutions (¢f. [77]).

F. Treves, however, dealt with only Nirenberg’s example in a generalized
form; namely,

2 9
” +it {1+p+th (z, 1)} .

It will be shown here that if L=%+ib(x, t)—a—a; and if &(x,) satisfies

certain condition, called (M), with an odd integer 2 (¢f. §1), then any
nonconstant solution of Lz=0 satisfies the local constancy principle, L can
be transformed by the diffeomqrphism into

-0 g 0
Y +itk {1+¢h (z, 1)} o
and, moreover, for this operator L the parallel results obtained by Treves

can be generalized; that is,
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Lu= g" +izk {1+ th(z, t)}

is not locally solvable for generic f,
Llu=%+m {1+ p+2h(z, )} %‘-=

has no nonconstant solution for certain functions p, and with the same p,
Lu= D it {1421z, )} 2

has no nontrivial solution.
The class of operator satisfying (M;) with odd integers £=0 includes the

generalized Mizohata operator
0

0
-z k
at+ta

and L=—?——+ib (z, t)—aa-; with &(z,t), odd function with respect to ¢ vari-

ot
able.

§1. Reduction to the canonical form

Throughout this paper Q will stand for an open subset of R2. We shall
denote a point in R? by (z,#). Let L be a C* complex vector field in Q
defined by

0
"T +tb(x, t)

where 5(z, ) is a real valued C” function in Q. For an integer k=0, we
define Y;, a subset of Q such as

2= {(z, 1) EQI—S‘%—(% £)=0}.

For each integer #=0, we introduce a condition (M;) on b(z,#) such that
Mp (1) %; (7=0,1,2,...,k—1) are all equal and coincide with an one di-
mensonal C” submanifold X of 2,

2 —g—;f—(x, t) X0 for any (z,t) & 2.

THEOREM 1.1. Let b(z,t) be a real valued C” function in Q. Suppose that
the property (M) holds in Q for some integer k=0. If wo=2, then there
exists an open neighborkood U of wq such that
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b(z, t) = (t—¢(2)) g (x, 1)

where ¢(x) is a real valued C” function in Q and g(z, t) is nowhere vanishing
real valued C” function in U.

Proof. By the suitable translation of coordinates, we may assume that w,
is the origin of R2.

Since %J—tbj— (0,0)=0 for all j=0,1,2, ..., 2~1 and 0% & (0,0) % 0, by the

Malgrange preparation theorem, there exists U, an open neighborhood of
wg, such that in U

b(z,2) =t +a (@)t 14+ ap(z)) g (z, £)

where a;(z) (i=1,2,...,%) is a real valued C” function in U and g(z,¢)
is nowhere vanishing real valued C* function in U. By the condition (M;),
for each fixed =,

tray ()t 14+ ap (o)
has Z-multiple root t=¢(z). Therefore,
o (2) 8oy () = (=B ()

Since —kp(z) =a;(z) and a;(z) is a real valued C” function, ¢(z) is also
a real valued C” function in U. Thus

b(z,t) = (t—¢(2)) g (z,¢)

where ¢(z) and g(z,t) are real valued C” functions and g(z, ¢) is nowhere
vanishing in U. Q. E.D.

THEOREM 1.2. Suppose (My) holds for b(x,t) in Q. Let wos2. Then
there exists an open neighborhood U of wqy and a local coordinates (y,s) in
U, vanishing at wy, such that, in the local chart (U :y,s)

0 e
L at+zb(x,t)a

takes the form
L=g(y,9) { +zsk[1+sh(y, s)]———}

where g(v,5) is a nowhere vanishing complex valued C” function in U and
k(y,s) is a real valued C” function in U.

Proof. Let wo=(zy, #). By the theorem 1, there exists an open neigh-
borhood U of wp such that
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b(z,t) = (t—¢(2)) *h(a, 1).
Let u=t—¢(z) and z=z—=x,.

0 _ 0 0 __yN0O 0
Ta el el O il e

Therefore, setting %(z, «) =k(z,t), we have

102

Then

L=aa—u+iukﬁ(z, u) (—¢ (z)—% +—aa;)

= (L= iuth (2, ) () + iubh (2, ) -2

We shrink U, if necessary, such that in U
1—iu*h (z, u) ¢’ (2) %0,
1+ iuth (2, u) ¢’ () =0.

Since wy=1(0,0) in (z,%) coordinates, this shrinking is possible. Thus in

U,
L=(1—iu*h(z, u)¢' (2)) (% —,;Zz%fugzb’ (2) _aa—Z)

’ 0 itk (2, w)[1+iu*h (z, ) (z)]1 0
— (l—zu"k (Z, u)¢ (z)) [T 1: uzkﬁz (z’ u) [¢/ (Z) ]2 z % ]

. , d u*h? (z, u) (¢’ (z) 0
= (1—iu*h(z, u)(b (z)) {T - 1+ u2th? (z, z) [¢/ O Dz

. wtk (2, u) 0
R G ) DT 92 }

We perform a second change of variables z=2(¢,7), =7 in U such that

0 _ 0 _ w22 (z, u) ¢’ (2) 0
or  ou 1+ 82 (2, w)[ ' (2) 2 02’
o _0
0¢ oz’
whence
L=f(¢,1) l +zT",3($ 7) 6$}
where

f(z, ©) =1—iuth(z, u) ¢’ (z).
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f& ) =Ff(z(&,1),7), and

BE) — T O
Since B(§,7) is a real valued C” function in U and B(wy) %0, Shrinking
U, if necessary, we have
B8, )= 0)[1+70(¢, )]
Our last change of variables will be of the form £§=£(0), =0, so that
5 =PE0Z L -2
Finally we revert to the notation y,s in place of , o respectively and get

L=g(y,s) {i—i-is"[l—{—sh(y, DY —533—:}

where g(y,s)=f(, 1), k(3,5) =7 7).

In each coordinates change used in the above we may take the coordlna-
tes to vanish at w, by the suitable translation. Thus the coordinates (y,s)
vanish at w,. Q.E.D.

REMARK. In the new coordinates (y,s), we have
2NU={(y,s)€U|s=0}.

This is clear from the way of constructing new coordinates in the proof of
the theorem 1. 2.

Thus by the theorem 1.2, when (M;) holds for &(z,t), L reduces locally
in the neighborhood U of wy&Z2 into a canonical form

L=g(z,2) {aa—t—{-itk[l-i-th (z,£)] 33;] :

We note that in this new coordinates
Wo= (0’ 0)’ 2 n U= {(.’L‘, t) ‘t=0} .

§2. Local constancy of the solution

THEOREM 2. 1. Suppose that (My) holds for b(x,t) for some odd integer
k=2m+1. If Lu=0u/0t+ib(z, t)0u/0x=0 has a solution u(z,t)=A(z, 1)+
iB(z,t), where A, B are real valued C' function, in the open neighborhood V
of wo€2 such that if du(w) =0 for any wEV, then for each fired x, near
to xzy, the function B(z, <) or A(z, ) attains local minimum or local maxi-
mum at t(x) where (z,t(x))sINV.
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Ou 0 _9u 0 10 the Hamiltonian field on V associ-
ot oz o0z ot

ated with ». Then

Proof. Let H,=

_ D4 D4 Ou ou_
Hu ot 0x 0Oz ot 0.

. [ Ou au> — L _al‘_ _ . i
Since du= (—at— . %0 on V and since Lu= o +ib(zx, t) . 0, it fo
llows that L=g(xz,t)H,, that is,

2 0 ou 0
a’“b(x’t)a =z (z, t><at 2z oz 6x>

where g(z, t) vanishes nowhere on V. From whence, we get
ou_, ou__
g(x, t)7~1b(x’ t), g(l‘, t) al' 13

or,

g(z,t) (A, +iBy) =ib(x, t), gl(x,t) (A, +iB,)=—1.

Since A(z,t), B(z,#) and b(z,¢) are all real valued, from the first equation

we have B,=b(z, t)Re(—}g—). Since —g—b- 0 for j=0,1,2,....,2—1 on 2, we
have antB =0 for j=1,2,...,%2 on 2N V. Similarly, A,=b(z,¢) Im(-é—)
Hence%T 0 for j=1,2,...,k on ZN V.

Suppose that both aa ; Jf (w) =0 and ——5?—1‘— (w) =0. Then —— (w)-
0. Thus either ——a—m— (w) %0 or —g—m—(w) %0 at each point win 2 V.

Since k#=2m-1 is an odd integer, this means that for each z, near to z,,
the function B(z, -) or A(x, -) attians local minimum or local maximum at

¢(z) where #(z) is such that(z, #(z))eINV. QE.D
REMARK. By shrinking V, the open neighborhood of w,, if necessary,

E+1
we get either “%Zﬁ"(w) #0 for any w2 NV or —%I;IIB— (w) #0 for any
1 41
weZ NV, since aa;_‘? or aa; +{3 is a continuous function. Moreover,

since 2= {(z,t) €0Q[8(z,t)=0}, and snce &(z, t)=(t—¢(a))k(x,t) where
h(z,t) nowhere vanishes, 5(z,#) has the same sign in the one side of 2 in
U. Thus shrinking V, if necessary, either A(z, -) or B(z, -) attains global
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minimum along X1V in V or global maximum along NV in V. There-
fore, taking iu(z,t), which is also a solution of Lu=0 if u(z,¢) is, or
changing sign of u(x,t) or iu(z,t), we may assume that B(z, -) attains
minimum along 2N V.

Thus, in the sequel, we shall assume that B(z, -) attains minimum along
JNVin V.

DerINITION Let D be a subset of R? and C be the field of complex num-
bers. Let u be a mapping from D into C. The fiber of u at z€u (D) is the
set of points (z,#) in D such that u(a, ) ==

THEOREM 2.2. Let b(x,t) satisfy (M,) for an odd integer k=0. Suppose

that ulz,t)=A(z, t)+iB(x,t) is the solution of

2 iz, 1) 2L —0
such that du+0 in the open neighborhood V of wyc2. We assume that B
(z, -) attains minimum along 2 V.

Then one can choose a new local coordinates (y,s) in a simply connected
open neighborhood UCV of wy, vanishing at wy, such that the following
local constancy principle holds;

(L.C.) the fibers of u in U consists either of a single points, when they are
contained in UNZ, or else of a pair of points, (y,s) and (y, —5),
when they do not intersect 2.

Proof. In this proof, we take the advantage of the reduced form of L as
is done in the theorem 1.2. Thus we assume that b5(z,¢)=t*(1+1th(z, 1))
and # is the solution of

gu + it 1+ th(z, t)]——-_.()
We shall first show that A, does not vanish in V. In fact, Lz=0 implies
that (A,+iB,)+ib(z, 1) (A,,—’rin):o or, B,=b(z,0)A,. Note that g’f

(z, £) =0 for j=1, 2, .. Izand (x t)=0 for j=0,1,2, ....k—1lonlyin 2NV

d_gﬁlis; and abiO in 2N V. But A,(w)=0 for we V2 implies

B,(w)=0 for weV,/2, while A,(w)=0 in 2NV implies —— 6“1 (w) =0

for w2 N V Both cases cannot occur. Thus A,(w) #0 for any we V.
In regard of the reduced form of L, that A,(w)+#0 for each weZNV
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implies that the set K,= {(z,2)|A(z, ¢)=¢} for a real number £ is one di-
mensional manifold which is transversal to 2, whenever K, meets with Z,
in the neighborhood of ¥NV. We may take V sufficiently small and thus
may assume K, is one dimensional submanifold of V which is transversal
to 2 whenever K; meets with 2.

Now let us notice that, by shrinking V, if necessary, we may assume
that 5(z, 2) <0 for (z,¢) in V+= {(z,2) €VI|>0} and b(x,2)>0 for (z,¢)
in V-={(z, £) € V|£<0}

Let 2=2(¢) be the solution of A(z,t)=& for some real number £&. Then

z=z(¢) is the solution of

i:t— == :——_4!‘_
A, 77 +4,=0 or () A
since A, does not vanish on V. Let Y(z, t)=———§i. Then if 5(z,r)<0

for any (z,r) €V, b(z,t) =0 for any (z,z) €V with ¢=r. Also since 4,=
0on 2NV (¢f. Proof of theorem 2.1), Y(z,£)=0 at any point (z,¢) €2
V where #(z, t) =b,(z, t) =0. Therefore by the H. Brezis lemma (¢f. [17),
if 8(z (), £0)<<0, then &(z(z), ) =0 for t=2. Applying the same arguments
for —¥(z, ¢), we conclude that B(z(z),#) attains global minimum in V at
t=0.

Thus A(z, £) =y+u(wy), B(y,t) =s+B(y,0) gives a local coordinates (v, 5)
in some open neighborhood U of w, such that local constancy principle
holds. It is clear that we may take U to be simply connected. Q.E.D.

REMARK. Let us remark that the open neighborhood U has to be taken to
be u—symmetry in the sense that (y,s)e U if and only if (y, —s)€U.

ReMARK. Consider u(x,t) =A(z,t) +iB(z,t) as a map from V to C. We
notice that the Jacobian determinant of A=Re(x) and Im(x) with respect

to z,¢ is as same as {4, B} =§1{{u, #} where {P,Q} indicates the Poisson

bracket; i.e.,

9P Q _oP 8Q
B =% 5 "o

Now since z and # are nonconstant solutions of Luz=0 and Lx=0, as
in the proof of the theorem 2.1
L':g(xa t)Hu! zzg (x: t) HE‘
9 o .

It is obvious that L=’5}"+’1’($’ t)—a—a; and E=§t—~—zb(x, t)-éa; are C-line-
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arly independent in V\2 and C-linearly dependent in XN V. Thus the pair
gH, and gH, are C-linearly independent in V\J and C-linearly dependent
in VN2.

- (O O _ Ou _3_> o (_3_“; 0 _or i)
Since gH, g(at o o o) ETE\Gr ar e o) el

does not vanish in V, it follows that % {u, 7} = {A, B} vanishes on NV

but never vanishes on V2.
Therefore, for any real &, {, the set Ké= {(x,¢) | A(xz, t) =&} is transversal
to the set K;= {(z,¢)|B(z,t)={ whenever they meet in V\ 2.

§3. Preliminary theorems.

The following three theorems are due to F. Trever (¢f. [7]). We offer
his proofs to make this article self contained and to use his results in later

sections.

THEOREM 3. 1. Let {U, 2} satisfy local constancy principle with respect to
a complex valued function u(z,t). Let V be an open subset of U, u—symme-
tric and connected. Let heC' (V) be such that d(hdu)=0. Then h is constant
on each fiber of u in V.

Proof. Let Ur={(z,t) €U|t>0} and U= {z,1) €U|t<0}. Set V==V
U*, Vo=VNZY, Q=p(V)=u(V"), I'=u(V,). Call r+ the restriction of
to V*+, k™ its restriction to V. Since z is a diffeomorphism of V*+ or V-~
onto @, we may form A*=A*- 47!, and hA=A*—%~, which are functions in
Q. Since d(hdu)=0 in V we have d(k(z)dz)=0 in @ : £ is holomorphic
in Q. But 2(z)—0 as 2—7I, and I’ is a smooth curve, containing nonempty
open arcs, and part of the foundary of Q. This implies that A=0 in Q.
Q.E.D.

THEOREM 3.2. Let U, V be as above. Suppose furthermore that V is simply
connected. Let g=C” (V) be such that d(gdu)=0 in the complement of a
compact subset K of U*. Then

jV d(gdu) =0.

Proof. We may assume that W+=V+\ K is connected. Let W~ be the
subset of V~ such that W*N W~ is a—symmetric, and set W=W+U W-U
Vo: W is open, connected, u-symmetric and d(gdu)=0 in W, therefore g
is constant on the fibers of » in W. Let y* be a smooth curve in W+,
winding around K once and denote by 7~ its reflection across 2. Thus 7
and 7y~ is w—symmetric. With the appropriate orientation we have
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j gdu=\| gdu.
T+ T

But 7~ is contractible to a point in V-, where d(gdu)=0, thereforeJ- gdu

-
=(. Since the support of gdu is contained in the interior of 7*, Stoke’s
theorem implies Jvd (gdu)=0. Q.E.D.

THEOREM 3.3. Let L be a C’complex vector field in an open subset U in
R? such that L does not vanish at any point in 8. Let *L be the transpose of
L and ¢=L+*tL. Then there is an open neighborhood U, of a point wy in Q
and a C” function u in Uy such that we Uy, du(w) =0 and Lu(w)=0 if and
only if there is an open neighborhood Vi of wo in @ and a function vEC”
(Vo) satisfying Lv=c in V.

Proof. The condition is necessary, for if Lu=0 has nonconstant solution,
then L=gH, in U,, with g=C”(U,), nowhere zero, and H, the Ham-
iltonian field of ». But then ‘{L=—L=—(H,g), hencec=—H,g. Take V,
small enough so that log g is defined in V, and belongs to C”(U,;). Then

1

L —log g]1= _Eng —H,g=c.

Conversely, let v be as in the statement and set M=¢"L. We have Mo
=L(e°) =ce’, and

tM= -+ Le?= — Le?+ ce?= — M.

_ o _ 0 04 _ 0B :
If M=A(z, t)—ax— B(z, 1) = Ve have P everywhere in V;. We
may suppose that V, is simply connected and therefore there is ucC™(V,)
such that du=Bdz+ Adt, hence M=H, and therefore Lu=0, dux=0 at ev-

ery point of Vo. Q.E.D.

§4 Local unsolvability

Let L be a complex vector field satisfying (M;) where % is a nonnegative
odd integer. Thus we may assume that

L—g(z, ©) —aat—+ztk(1+m(x, z))%}

on an open neighborhood U of a point wy€2X. Note that we=(0,0) in
(z, ) coordinates. We call U* (resp. U™) the subset of U where >0
(resp. +<<0).

We denote by {K,} v=1,2,... an infinite sequence of compact subsets of
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U-, having the following properties: The sets K, converge to the set {0},
and, moreover, the projections on the z-axis of the K, are pairwise disjoint.

Below, f will denote any C” function in U having the following three
properties;

( i) f=0 everywhere,

(ii) /=0 in the complement of UK,, and

(iii) for any v, there exists w,Ek,, such that f(w,)>0.

THEOREM 4. 1. Suppose that there exists an open neighborhood WU of
wyE2 and a functionvsC” (W) such that in W

Lo=—itttigh,.
Then there does not exist a C” function w in W such that Lw=f in W.
Proof. Let us write Ly=g L. Then
Ly+tLy=—it**1h,.

By hypothesis, there exists a function v&C”(W) such that Lyp= —itt+1},.
We may apply the theorem 3.3. We conclude that for L, and hence for
L, there exists U, an open neighborhood of wy and a C function z in U,
such that we U, du(w) %0 and Lu(w)=0. Thus we may write in Uy, L=

Ou 0 ou 0

gH, where Hy=-g—"——2"—

Suppose Lw=f in W. Then Huw:—% in UpN W. Note that (H,w)dz

dt=d(wdu). We select an open neighborhood U of wy, OcUyN W and U
u-symmetric. We write U*=0U N U*. Clearly, for v large enough we can
find an open rectangle

V,r={(z, t) €U |a,<2<lb,, 0<t<T)}

contained in U*, containing K, and not intersecting any K,, for »/#v. Let
V,” be the unique open subsets of U~ such that V,*UV,” is &—symmetric,
and call I, the interval in %, a,<2<b,, t=0. Then

V,=V,*ULUV,~

has the following properties: V, is connected and simply connected; K, <
V,; V, is u—~symmetric. Let w, denote the restriction of w to V,. By our
hypothesis about £, the support of d(w,dx) is contained in K,. Therefore,

U X, —{;—dx dt=0.

But as y — +co the argument of g in K, becomes arbitrarily close to

and gC”(U,), nowhere zero.
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Arg g(0,0), since f=0 everywhere in K, and f>>0 at some point of K,
the above is not possible as soon as v is large enough. Thus w satisfying
Lw=f in W can not exist. Q.E.D.

§5. Nonexistence of nonconstant solutions

Let {Kmmp (m,n, p are positive integers) be a triple sequence whose el-
ements are contained in U+and whose z-projections are pairwise disjoint.
We make the following hypothesis:

For fixed m,n and for p —-+ o, the sets K,,,,, converges to the set
consisting of a single point (Tyyns tmsn)s With tpn>0; for fized m, the point
(Zmsm> Emon) converges t0 (Tmy ty), with t,>0; LMy w(Zm tn) = (0, 0).

We define then p in the same manner f in §4 but relative to the Kp,p -
( i) p=0 everywhere:
(ii) p=0 in the complement of U K.,

mn,p

(iii) Vm’ ny P> mev np € Km, nr p Suc}l that P (wrln 7y p) >0-

THEOREM 5.1. Suppose that

04 | ou __
5 +itt(1+¢th(z, t)) - 0

has a solution u(z,t) in an open neighborhood U, of apoint woyS2 such that
we Uy, du{w)+0. Then there is an open neighborhood W U, of wy such
that any solution u;<C” (W) of

Ouy g Ouy _
5t + itk (1-+p+ th) o 0

is constant in W.

Proof. We use the same notation as in the proof of the theorem 4.1 ex-
cept that v is replaced everywhere by (m,n,»). We duplicate the reasoning

in that proof, taking now f=—z‘t"gp~aa%~. We reach the conclusion that for

m, ng, po large enough and m>mg, n>>no, p>po

- ou
1k 1 =
mem’pg rep or dz dt 0.

But here we cannot avail ourselves of the fact Ouy. +0.

oz
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By letting p go to 4o, we derive that
0
"a%:l“(-rm’m tm,n)zo

and therefore,

dul (xmam tmm) ={.

Now we let » go to +c0. We conclude that du;, vanishes of infinite or-
der at (z,,¢t,). Since L, is e[[iptic in the region £>0, we conclude that
duy=0 for t>0. To derive that du,;=0 throughout its domain, we use the
fact that, by our construction of the K,,,,, there is a connected z-symm-

etric open subset W, V, in which Ll—-l—L and thus Lu;=0, with V inter-

secting both U+ and U~. Since #; is constant on the fibers of « and is co-
nstant in VN U+, we must have du;=0 in V and by the ellipticity of L
for ¢t<0, also in WNU-. Q.E.D.

THEOREM 5.2. If ——+ztk(1+t/z (z, t))—g%=0 has a solution u in an open

neighborhood Uy of a point wo=2 such that we Uy, du(w)F#0, then the eq-
uation

ou
ot

has no nontrivial solution in some open neighborhood W Uy of wy.

Proof. Duplicate the proof of the theorem 5.1 with f=pu;. Q.E.D.

L Ltk (14 th (z, t))—~+pu 0

ReEMARK. When A(z,t) is analytic, then by the Cauchy-Kovalewska the-
orem

ou
ot

has always nonconstant solution required as in the theorems 5.1 and 5. 2.

——+itt(1+th(x, t))—~———0

Notice. The second author initiated the materials in this article. More
extensive and generalized version of this article will be appear in his paper
now under preparation. The proofs in sections 4 and 5 are essentially dup-
lication of Treves’ proof when 2=1.
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